Mastering spaCy : Build structured NLP solutions with custom components and models powered by spacy-llm (2ND)

個数:
  • ポイントキャンペーン

Mastering spaCy : Build structured NLP solutions with custom components and models powered by spacy-llm (2ND)

  • ウェブストア価格 ¥7,835(本体¥7,123)
  • Packt Publishing Limited(2025/02発売)
  • 外貨定価 US$ 39.99
  • 【ウェブストア限定】サマー!ポイント5倍キャンペーン 対象商品(~7/21)※店舗受取は対象外
  • ポイント 355pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 238 p.
  • 言語 ENG
  • 商品コード 9781835880463
  • DDC分類 006.35

Full Description

Discover how to master advanced spaCy techniques, including custom pipelines, LLM integration, and model training, to build NLP solutions efficiently and effectively

Key Features

Build End-to-End NLP Workflows, From Local Development to Production with Weasel and FastAPI
Master No-Training NLP Development with spaCy-LLM, From Prompt Engineering to Custom Tasks
Create Advanced NLP Solutions, From Custom Components to Neural Coreference Resolution

Book DescriptionMastering spaCy, Second Edition is your comprehensive guide to building sophisticated NLP applications using the spaCy ecosystem. This revised edition embraces the latest advancements in NLP, featuring new chapters on Large Language Models with spaCy-LLM, transformers integration, and end-to-end workflow management with Weasel.
With this new edition you'll learn to enhance NLP tasks using LLMs with spaCy-llm, manage end-to-end workflows using Weasel and integrating spaCy with third-party libraries like Streamlit, FastAPI, and DVC. From training custom named entity recognition (NER) pipelines to categorizing emotions in Reddit posts, readers will explore advanced topics like text classification and coreference resolution. This book takes you on a journey through spaCy's capabilities, starting with the fundamentals of NLP, such as tokenization, named entity recognition, and dependency parsing. As you progress, you'll delve into advanced topics like creating custom components, training domain-specific models, and building scalable NLP workflows.
By end of the book, through practical examples, clear explanations, tips and tricks you will be empowered to build robust NLP pipelines and integrate them with web applications to build end-to-end solutions.What you will learn

Apply transformer models and fine-tune them for specialized NLP tasks
Master spaCy core functionalities including data structures and processing pipelines
Develop custom pipeline components and semantic extractors for domain-specific needs
Build scalable applications by integrating spaCy with FastAPI, Streamlit, and DVC
Master advanced spaCy features including coreference resolution and neural pipeline components
Train domain-specific models, including NER and coreference resolution
Prototype rapidly with spaCy-LLM and develop custom LLM tasks

Who this book is forThis book is tailored for NLP engineers, machine learning developers, and LLM engineers looking to build production-grade language processing solutions. While primarily targeting professionals working with language models and NLP pipelines, it's also valuable for software engineers transitioning into NLP development. Basic Python programming knowledge and familiarity with NLP concepts is recommended to leverage spaCy's latest capabilities.

Contents

Table of Contents

Getting started with spaCy
Exploring spaCy Core Operations
Extracting Linguistic Features
Mastering Rule-Based Matching
Extracting Semantic Representations with spaCy Pipelines
Utilizing spaCy with Transformers
Enhancing NLP tasks using LLMs with spacy-llm
Training a NER pipeline component with spaCy
Creating End-to-End spaCy Workflows with Weasel
Training a Coreference Resolution pipeline
Integrating spaCy with third-party libraries

最近チェックした商品