Active Machine Learning with Python : Refine and elevate data quality over quantity with active learning

個数:

Active Machine Learning with Python : Refine and elevate data quality over quantity with active learning

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 176 p.
  • 言語 ENG
  • 商品コード 9781835464946
  • DDC分類 006.31

Full Description

Use active machine learning with Python to improve the accuracy of predictive models, streamline the data analysis process, and adapt to evolving data trends, fostering innovation and progress across diverse fields

Key Features

Learn how to implement a pipeline for optimal model creation from large datasets and at lower costs
Gain profound insights within your data while achieving greater efficiency and speed
Apply your knowledge to real-world use cases and solve complex ML problems
Purchase of the print or Kindle book includes a free PDF eBook

Book DescriptionBuilding accurate machine learning models requires quality data—lots of it. However, for most teams, assembling massive datasets is time-consuming, expensive, or downright impossible. Led by Margaux Masson-Forsythe, a seasoned ML engineer and advocate for surgical data science and climate AI advancements, this hands-on guide to active machine learning demonstrates how to train robust models with just a fraction of the data using Python's powerful active learning tools.
You'll master the fundamental techniques of active learning, such as membership query synthesis, stream-based sampling, and pool-based sampling and gain insights for designing and implementing active learning algorithms with query strategy and Human-in-the-Loop frameworks. Exploring various active machine learning techniques, you'll learn how to enhance the performance of computer vision models like image classification, object detection, and semantic segmentation and delve into a machine AL method for selecting the most informative frames for labeling large videos, addressing duplicated data. You'll also assess the effectiveness and efficiency of active machine learning systems through performance evaluation.
By the end of the book, you'll be able to enhance your active learning projects by leveraging Python libraries, frameworks, and commonly used tools.What you will learn

Master the fundamentals of active machine learning
Understand query strategies for optimal model training with minimal data
Tackle class imbalance, concept drift, and other data challenges
Evaluate and analyze active learning model performance
Integrate active learning libraries into workflows effectively
Optimize workflows for human labelers
Explore the finest active learning tools available today

Who this book is forIdeal for data scientists and ML engineers aiming to maximize model performance while minimizing costly data labeling, this book is your guide to optimizing ML workflows and prioritizing quality over quantity. Whether you're a technical practitioner or team lead, you'll benefit from the proven methods presented in this book to slash data requirements and iterate faster.
Basic Python proficiency and familiarity with machine learning concepts such as datasets and convolutional neural networks is all you need to get started.

Contents

Table of Contents

Introducing Active Machine Learning
Designing Query Strategy Frameworks
Managing the Human in the Loop
Applying Active Learning to Computer Vision
Leveraging Active Learning for Big Data
Evaluating and Enhancing Efficiency
Utilizing Tools and Packages for Active Learning

最近チェックした商品