Building AI Agents with LLMs, RAG, and Knowledge Graphs : A practical guide to autonomous and modern AI agents

個数:

Building AI Agents with LLMs, RAG, and Knowledge Graphs : A practical guide to autonomous and modern AI agents

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 566 p.
  • 言語 ENG
  • 商品コード 9781835087060
  • DDC分類 006.3

Full Description

Master LLM fundamentals to advanced techniques like RAG, reinforcement learning, and knowledge graphs to build, deploy, and scale intelligent AI agents that reason, retrieve, and act autonomously

DRM-free PDF version + access to Packt's next-gen Reader

Key Features

Implement RAG and knowledge graphs for advanced problem-solving
Leverage innovative approaches like LangChain to create real-world intelligent systems
Integrate large language models, graph databases, and tool use for next-gen AI solutions

Book DescriptionThis book addresses the challenge of building AI that not only generates text but also grounds its responses in real data and takes action. Authored by AI specialists with expertise in drug discovery and systems optimization, this guide empowers you to leverage retrieval-augmented generation (RAG), knowledge graphs, and agent-based architectures to engineer truly intelligent behavior. By combining large language models (LLMs) with up-to-date information retrieval and structured knowledge, you'll create AI agents capable of deeper reasoning and more reliable problem-solving.
Inside, you'll find a practical roadmap from concept to implementation. You'll discover how to connect language models with external data via RAG pipelines for increasing factual accuracy and incorporate knowledge graphs for context-rich reasoning. The chapters will help you build and orchestrate autonomous agents that combine planning, tool use, and knowledge retrieval to achieve complex goals. Concrete Python examples and real-world case studies reinforce each concept and show how the techniques fit together.

By the end of this book, you'll be able to build intelligent AI agents that reason, retrieve, and interact dynamically, empowering you to deploy powerful AI solutions across industries.

Email sign-up and proof of purchase requiredWhat you will learn

Learn how LLMs work, their structure, uses, and limits, and design RAG pipelines to link them to external data
Build and query knowledge graphs for structured context and factual grounding
Develop AI agents that plan, reason, and use tools to complete tasks
Integrate LLMs with external APIs and databases to incorporate live data
Apply techniques to minimize hallucinations and ensure accurate outputs
Orchestrate multiple agents to solve complex, multi-step problems
Optimize prompts, memory, and context handling for long-running tasks
Deploy and monitor AI agents in production environments

Who this book is forIf you are a data scientist or researcher who wants to learn how to create and deploy an AI agent to solve limitless tasks, this book is for you. To get the most out of this book, you should have basic knowledge of Python and Gen AI. This book is also excellent for experienced data scientists who want to explore state-of-the-art developments in LLM and LLM-based applications.

Contents

Table of Contents

Analyzing Text Data with Deep Learning
The Transformer: The Model Behind the Modern AI Revolution
Exploring LLMs as a Powerful AI Engine
Building a Web Scraping Agent with an LLM
Extending Your Agent with RAG to Prevent Hallucinations
Advanced RAG Techniques for Information Retrieval and Augmentation
Creating and Connecting a Knowledge Graph to an AI Agent
Reinforcement Learning and AI Agents
Creating Single- and Multi-Agent Systems
Building an AI Agent Application
The Future Ahead

最近チェックした商品