AI-Driven Knowledge Management Assets, Volume 1 : Strategies for the Modern Business Landscape

個数:
  • 予約

AI-Driven Knowledge Management Assets, Volume 1 : Strategies for the Modern Business Landscape

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 400 p.
  • 言語 ENG
  • 商品コード 9781805923923
  • DDC分類 330.1

Full Description

With Artificial Intelligence (AI) reshaping how businesses operate, the integration of intelligent technologies into Knowledge Management (KM) processes offers new opportunities for optimizing data-driven decision-making and enhancing organizational performance.

AI-Driven Knowledge Management Assets, Volumes 1 and 2 explore KM as a critical element of business strategy and managerial practice, especially in an era of rapid AI adoption. Authors examine KM's foundational and advanced aspects through a managerial lens, highlighting how AI is reshaping contemporary KM practices, and delve into traditional KM strategies and cutting-edge AI applications. Each chapter is enriched with case studies and empirical research that showcase the real-world benefits and challenges of integrating AI into KM. From uncovering the theoretical underpinnings of KM to examining AI-driven innovations that create competitive advantages, this work offers actionable insights and perspectives on future developments. Authors address ethical, sustainability and managerial issues, equipping readers with the tools to navigate the complexities of AI-infused KM practices.

Providing a valuable resource for business leaders, academics, and students, these volumes support those looking to integrate AI into KM to drive strategic decision-making and operational efficiency. Merging traditional knowledge management practices with the latest AI advancements, they prepare readers to harness technology for innovative solutions, positioning their organizations for success in the modern business landscape.

Contents

Part 1. Introduction

Chapter 1. The New Era of Artificial Intelligence in Knowledge Management: Framing the Foundations of Intelligent Processes; Meir Russ and Miltiadis Lytras

Part 2. The Role of AI in Enhancing Knowledge Management Processes

Chapter 2. The Role of AI in Enhancing Knowledge Management Processes; Tamer Fahmy, Richa Minda, and Stephen Pak

Chapter 3. The Ethical and Managerial Implications of Integrating Generative Artificial Intelligence into Knowledge Management Processes; James Osabuohien Odia

Chapter 4. Artificial Intelligence-Based Risk Identification in Supervision Reports of the Ministry of Health; Avital Zadok and Daphne Ruth Raban

Part 3. AI and Knowledge Discovery: Techniques and Applications

Chapter 5. Effectively Informing Policies with Digital Twins, AI and Digital Technologies; Giovanna Di Marzo Serugendo

Chapter 6. The Complementary Roles of AI and Human Intelligence (HI) in Business Knowledge Management; Khoon Chin

Chapter 7. AI and Knowledge Management: Navigating the Misinformation Maze; Liz Kheng and Mark D. Schriml

Chapter 8. Transforming Knowledge Management with AI: Leveraging Retrieval-Augmented Generation (RAG) in Business Strategy; Yiyuan Ava Liu and Wanxi Li

Part 4. Machine Learning for Organizational Learning and Knowledge Sharing

Chapter 9. Learning and Development (L&D) Units and Organizational Culture: Impacts on GenAI Adoption in Israeli Organizations; Gila Kurtz, Eran Gal, Einav Yehilaviz, and Shachar Mahalal

Chapter 10. Enhancing Business Education with the Knowledge Management Mesosystem Model: A Framework for Active Learning, AI Integration, and Knowledge Sharing; Shanzhen Gao and Weizheng Gao

Part 5. Ethical Considerations in AI-Driven Knowledge Management

Chapter 11. Ethical Considerations in AI-Driven Knowledge Management: Navigating Challenges in the Modern Business Landscape; Theophilus Kofi Anyanful

Chapter 12. Who Can? AI Can! Enhancing Firms' Knowledge Management Capabilities Through an Ethical Implementation of Artificial Intelligence; Soode Vaezinejad, Christopher Michael Starkey, and Dara Schniederjans

Chapter 13. Biases and Ethical Considerations in AI-Driven Knowledge Management; Ruti Gafni, Boris Kantsepolsky, and Sofia Sherman

Part 6. Conclusions

Chapter 14. The Way Forward: A Roadmap for the Effective Adoption of AI-Driven Knowledge Management Strategies in Business; Miltiadis Lytras and Meir Russ

最近チェックした商品