Hands-On Genetic Algorithms with Python : Apply genetic algorithms to solve real-world AI and machine learning problems (2ND)

個数:
  • ポイントキャンペーン

Hands-On Genetic Algorithms with Python : Apply genetic algorithms to solve real-world AI and machine learning problems (2ND)

  • ウェブストア価格 ¥7,995(本体¥7,269)
  • Packt Publishing Limited(2024/07発売)
  • 外貨定価 US$ 39.99
  • 【ウェブストア限定】サマー!ポイント5倍キャンペーン 対象商品(~7/21)※店舗受取は対象外
  • ポイント 360pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 418 p.
  • 言語 ENG
  • 商品コード 9781805123798
  • DDC分類 006.3823

Full Description

Explore the ever-growing world of genetic algorithms to build and enhance AI applications involving search, optimization, machine learning, deep learning, NLP, and XAI using Python libraries

Key Features

Learn how to implement genetic algorithms using Python libraries DEAP, scikit-learn, and NumPy
Take advantage of cloud computing technology to increase the performance of your solutions
Discover bio-inspired algorithms such as particle swarm optimization (PSO) and NEAT
Purchase of the print or Kindle book includes a free PDF eBook

Book DescriptionWritten by Eyal Wirsansky, a senior data scientist and AI researcher with over 25 years of experience and a research background in genetic algorithms and neural networks, Hands-On Genetic Algorithms with Python offers expert insights and practical knowledge to master genetic algorithms.
After an introduction to genetic algorithms and their principles of operation, you'll find out how they differ from traditional algorithms and the types of problems they can solve, followed by applying them to search and optimization tasks such as planning, scheduling, gaming, and analytics. As you progress, you'll delve into explainable AI and apply genetic algorithms to AI to improve machine learning and deep learning models, as well as tackle reinforcement learning and NLP tasks. This updated second edition further expands on applying genetic algorithms to NLP and XAI and speeding up genetic algorithms with concurrency and cloud computing. You'll also get to grips with the NEAT algorithm. The book concludes with an image reconstruction project and other related technologies for future applications.
By the end of this book, you'll have gained hands-on experience in applying genetic algorithms across a variety of fields, with emphasis on artificial intelligence with Python.What you will learn

Use genetic algorithms to solve planning, scheduling, gaming, and analytics problems
Create reinforcement learning, NLP, and explainable AI applications
Enhance the performance of ML models and optimize deep learning architecture
Deploy genetic algorithms using client-server architectures, enhancing scalability and computational efficiency
Explore how images can be reconstructed using a set of semi-transparent shapes
Delve into topics like elitism, niching, and multiplicity in genetic solutions to enhance optimization strategies and solution diversity

Who this book is forIf you're a data scientist, software developer, AI enthusiast who wants to break into the world of genetic algorithms and apply them to real-world, intelligent applications as quickly as possible, this book is for you. Working knowledge of the Python programming language is required to get started with this book.

Contents

Table of Contents

An Introduction to Genetic Algorithms
Understanding the Key Components of Genetic Algorithms
Using the DEAP Framework
Combinatorial Optimization
Constraint Satisfaction
Optimizing Continuous Functions
Enhancing Machine Learning Models Using Feature Selection
Hyperparameter Tuning Machine Learning Models
Architecture Optimization of Deep Learning Networks
Reinforcement Learning with Genetic Algorithms
Natural Language Processing
Explainable AI and Counterfactuals
Speeding Up Genetic Algorithms with Concurrency
Harnessing the Cloud
Genetic Image Reconstruction
Other Evolutionary and Bio-Inspired Computation Techniques

最近チェックした商品