Practical Guide to Applied Conformal Prediction in Python : Learn and apply the best uncertainty frameworks to your industry applications

個数:

Practical Guide to Applied Conformal Prediction in Python : Learn and apply the best uncertainty frameworks to your industry applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 240 p.
  • 言語 ENG
  • 商品コード 9781805122760
  • DDC分類 006.31

Full Description

Elevate your machine learning skills using the Conformal Prediction framework for uncertainty quantification. Dive into unique strategies, overcome real-world challenges, and become confident and precise with forecasting.

Key Features

Master Conformal Prediction, a fast-growing ML framework, with Python applications
Explore cutting-edge methods to measure and manage uncertainty in industry applications
Understand how Conformal Prediction differs from traditional machine learning

Book DescriptionIn the rapidly evolving landscape of machine learning, the ability to accurately quantify uncertainty is pivotal. The book addresses this need by offering an in-depth exploration of Conformal Prediction, a cutting-edge framework to manage uncertainty in various ML applications.
Learn how Conformal Prediction excels in calibrating classification models, produces well-calibrated prediction intervals for regression, and resolves challenges in time series forecasting and imbalanced data. Discover specialised applications of conformal prediction in cutting-edge domains like computer vision and NLP. Each chapter delves into specific aspects, offering hands-on insights and best practices for enhancing prediction reliability. The book concludes with a focus on multi-class classification nuances, providing expert-level proficiency to seamlessly integrate Conformal Prediction into diverse industries. With practical examples in Python using real-world datasets, expert insights, and open-source library applications, you will gain a solid understanding of this modern framework for uncertainty quantification.
By the end of this book, you will be able to master Conformal Prediction in Python with a blend of theory and practical application, enabling you to confidently apply this powerful framework to quantify uncertainty in diverse fields.What you will learn

The fundamental concepts and principles of conformal prediction
Learn how conformal prediction differs from traditional ML methods
Apply real-world examples to your own industry applications
Explore advanced topics - imbalanced data and multi-class CP
Dive into the details of the conformal prediction framework
Boost your career as a data scientist, ML engineer, or researcher
Learn to apply conformal prediction to forecasting and NLP

Who this book is forIdeal for readers with a basic understanding of machine learning concepts and Python programming, this book caters to data scientists, ML engineers, academics, and anyone keen on advancing their skills in uncertainty quantification in ML.

Contents

Table of Contents

Introducing Conformal Prediction
Overview of Conformal Prediction
Fundamentals of Conformal Prediction
Validity and Efficiency of Conformal Prediction
Types of Conformal Predictors
Conformal Prediction for Classification
Conformal Prediction for Regression
Conformal Prediction for Time Series and Forecasting
Conformal Prediction for Computer Vision
Conformal Prediction for Natural Language Processing
Handling Imbalanced Data
Multi-Class Conformal Prediction

最近チェックした商品