Serverless Machine Learning with Amazon Redshift ML : Create, train, and deploy machine learning models using familiar SQL commands

個数:

Serverless Machine Learning with Amazon Redshift ML : Create, train, and deploy machine learning models using familiar SQL commands

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 290 p.
  • 言語 ENG
  • 商品コード 9781804619285
  • DDC分類 006.3

Full Description

Supercharge and deploy Amazon Redshift Serverless, train and deploy machine learning models using Amazon Redshift ML, and run inference queries at scale

Key Features

Leverage supervised learning to build binary classification, multi-class classification, and regression models
Learn to use unsupervised learning using the K-means clustering method
Master the art of time series forecasting using Redshift ML
Purchase of the print or Kindle book includes a free PDF eBook

Book DescriptionAmazon Redshift Serverless enables organizations to run petabyte-scale cloud data warehouses quickly and in a cost-effective way, enabling data science professionals to efficiently deploy cloud data warehouses and leverage easy-to-use tools to train models and run predictions. This practical guide will help developers and data professionals working with Amazon Redshift data warehouses to put their SQL knowledge to work for training and deploying machine learning models.
The book begins by helping you to explore the inner workings of Redshift Serverless as well as the foundations of data analytics and types of data machine learning. With the help of step-by-step explanations of essential concepts and practical examples, you'll then learn to build your own classification and regression models. As you advance, you'll find out how to deploy various types of machine learning projects using familiar SQL code, before delving into Redshift ML. In the concluding chapters, you'll discover best practices for implementing serverless architecture with Redshift.
By the end of this book, you'll be able to configure and deploy Amazon Redshift Serverless, train and deploy machine learning models using Amazon Redshift ML, and run inference queries at scale.What you will learn

Utilize Redshift Serverless for data ingestion, data analysis, and machine learning
Create supervised and unsupervised models and learn how to supply your own custom parameters
Discover how to use time series forecasting in your data warehouse
Create a SageMaker endpoint and use that to build a Redshift ML model for remote inference
Find out how to operationalize machine learning in your data warehouse
Use model explainability and calculate probabilities with Amazon Redshift ML

Who this book is forData scientists and machine learning developers working with Amazon Redshift who want to explore its machine-learning capabilities will find this definitive guide helpful. A basic understanding of machine learning techniques and working knowledge of Amazon Redshift is needed to make the most of this book.

Contents

Table of Contents

Introduction to Redshift Serverless
Data Loading and Analytics on Redshift Serverless
Applying Machine Learning in Your Data Warehouse
Leveraging Amazon Redshift Machine Learning
Building Your First Machine Learning Model
Building Classification Models
Building Regression Models
Building Unsupervised Models with K-Means Clustering
Deep Learning with Redshift ML
Creating Custom ML Models with XGBoost
Bring Your Own Models for in Database Inference
Time-Series Forecasting in your Data Warehouse
Operationalizing and Optimizing Amazon Redshift ML Models

最近チェックした商品