Data Engineering with AWS : Acquire the skills to design and build AWS-based data transformation pipelines like a pro (2ND)

個数:

Data Engineering with AWS : Acquire the skills to design and build AWS-based data transformation pipelines like a pro (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 636 p.
  • 言語 ENG
  • 商品コード 9781804614426
  • DDC分類 004.6782

Full Description

Looking to revolutionize your data transformation game with AWS? Look no further! From strong foundations to hands-on building of data engineering pipelines, our expert-led manual has got you covered.

Key Features

Delve into robust AWS tools for ingesting, transforming, and consuming data, and for orchestrating pipelines
Stay up to date with a comprehensive revised chapter on Data Governance
Build modern data platforms with a new section covering transactional data lakes and data mesh

Book DescriptionThis book, authored by a seasoned Senior Data Architect with 25 years of experience, aims to help you achieve proficiency in using the AWS ecosystem for data engineering. This revised edition provides updates in every chapter to cover the latest AWS services and features, takes a refreshed look at data governance, and includes a brand-new section on building modern data platforms which covers; implementing a data mesh approach, open-table formats (such as Apache Iceberg), and using DataOps for automation and observability.

You'll begin by reviewing the key concepts and essential AWS tools in a data engineer's toolkit and getting acquainted with modern data management approaches. You'll then architect a data pipeline, review raw data sources, transform the data, and learn how that transformed data is used by various data consumers. You'll learn how to ensure strong data governance, and about populating data marts and data warehouses along with how a data lakehouse fits into the picture. After that, you'll be introduced to AWS tools for analyzing data, including those for ad-hoc SQL queries and creating visualizations. Then, you'll explore how the power of machine learning and artificial intelligence can be used to draw new insights from data. In the final chapters, you'll discover transactional data lakes, data meshes, and how to build a cutting-edge data platform on AWS.

By the end of this AWS book, you'll be able to execute data engineering tasks and implement a data pipeline on AWS like a pro!What you will learn

Seamlessly ingest streaming data with Amazon Kinesis Data Firehose
Optimize, denormalize, and join datasets with AWS Glue Studio
Use Amazon S3 events to trigger a Lambda process to transform a file
Load data into a Redshift data warehouse and run queries with ease
Visualize and explore data using Amazon QuickSight
Extract sentiment data from a dataset using Amazon Comprehend
Build transactional data lakes using Apache Iceberg with Amazon Athena
Learn how a data mesh approach can be implemented on AWS

Who this book is forThis book is for data engineers, data analysts, and data architects who are new to AWS and looking to extend their skills to the AWS cloud. Anyone new to data engineering who wants to learn about the foundational concepts, while gaining practical experience with common data engineering services on AWS, will also find this book useful. A basic understanding of big data-related topics and Python coding will help you get the most out of this book, but it's not a prerequisite. Familiarity with the AWS console and core services will also help you follow along.

Contents

Table of Contents

An Introduction to Data Engineering
Data Management Architectures for Analytics
The AWS Data Engineer's Toolkit
Data Governance, Security, and Cataloging
Architecting Data Engineering Pipelines
Ingesting Batch and Streaming Data
Transforming Data to Optimize for Analytics
Identifying and Enabling Data Consumers
A Deeper Dive into Data Marts and Amazon Redshift
Orchestrating the Data Pipeline
Ad Hoc Queries with Amazon Athena
Visualizing Data with Amazon QuickSight
Enabling Artificial Intelligence and Machine Learning
Building Transactional Data Lakes
Implementing a Data Mesh Strategy
Building a Modern Data Platform on AWS
Wrapping Up the First Part of Your Learning Journey

最近チェックした商品