Causal Inference and Discovery in Python : Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more

個数:

Causal Inference and Discovery in Python : Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 456 p.
  • 言語 ENG
  • 商品コード 9781804612989
  • DDC分類 006.31

Full Description

Demystify causal inference and casual discovery by uncovering causal principles and merging them with powerful machine learning algorithms for observational and experimental data
Purchase of the print or Kindle book includes a free PDF eBook

Key Features

Examine Pearlian causal concepts such as structural causal models, interventions, counterfactuals, and more
Discover modern causal inference techniques for average and heterogenous treatment effect estimation
Explore and leverage traditional and modern causal discovery methods

Book DescriptionCausal methods present unique challenges compared to traditional machine learning and statistics. Learning causality can be challenging, but it offers distinct advantages that elude a purely statistical mindset. Causal Inference and Discovery in Python helps you unlock the potential of causality.
You'll start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian causal concepts, such as structural causal models, interventions, counterfactuals, and more. Each concept is accompanied by a theoretical explanation and a set of practical exercises with Python code. Next, you'll dive into the world of causal effect estimation, consistently progressing towards modern machine learning methods. Step-by-step, you'll discover Python causal ecosystem and harness the power of cutting-edge algorithms. You'll further explore the mechanics of how "causes leave traces" and compare the main families of causal discovery algorithms. The final chapter gives you a broad outlook into the future of causal AI where we examine challenges and opportunities and provide you with a comprehensive list of resources to learn more.
By the end of this book, you will be able to build your own models for causal inference and discovery using statistical and machine learning techniques as well as perform basic project assessment.What you will learn

Master the fundamental concepts of causal inference
Decipher the mysteries of structural causal models
Unleash the power of the 4-step causal inference process in Python
Explore advanced uplift modeling techniques
Unlock the secrets of modern causal discovery using Python
Use causal inference for social impact and community benefit

Who this book is forThis book is for machine learning engineers, researchers, and data scientists looking to extend their toolkit and explore causal machine learning. It will also help people who've worked with causality using other programming languages and now want to switch to Python, those who worked with traditional causal inference and want to learn about causal machine learning, and tech-savvy entrepreneurs who want to go beyond the limitations of traditional ML. You are expected to have basic knowledge of Python and Python scientific libraries along with knowledge of basic probability and statistics.

Contents

Table of Contents

Causality - Hey, We Have Machine Learning, So Why Even Bother?
Judea Pearl and the Ladder of Causation
Regression, Observations, and Interventions
Graphical Models
Forks, Chains, and Immoralities
Nodes, Edges, and Statistical (In)dependence
The Four-Step Process of Causal Inference
Causal Models - Assumptions and Challenges
Causal Inference and Machine Learning - from Matching to Meta- Learners
Causal Inference and Machine Learning - Advanced Estimators, Experiments, Evaluations, and More
Causal Inference and Machine Learning - Deep Learning, NLP, and Beyond
Can I Have a Causal Graph, Please?
Causal Discovery and Machine Learning - from Assumptions to Applications
Causal Discovery and Machine Learning - Advanced Deep Learning and Beyond
Epilogue

最近チェックした商品