Data Forecasting and Segmentation Using Microsoft Excel : Perform data grouping, linear predictions, and time series machine learning statistics without using code

個数:

Data Forecasting and Segmentation Using Microsoft Excel : Perform data grouping, linear predictions, and time series machine learning statistics without using code

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 324 p.
  • 言語 ENG
  • 商品コード 9781803247731
  • DDC分類 006.31

Full Description

Perform time series forecasts, linear prediction, and data segmentation with no-code Excel machine learning

Key Features

Segment data, regression predictions, and time series forecasts without writing any code
Group multiple variables with K-means using Excel plugin without programming
Build, validate, and predict with a multiple linear regression model and time series forecasts

Book DescriptionData Forecasting and Segmentation Using Microsoft Excel guides you through basic statistics to test whether your data can be used to perform regression predictions and time series forecasts. The exercises covered in this book use real-life data from Kaggle, such as demand for seasonal air tickets and credit card fraud detection.

You'll learn how to apply the grouping K-means algorithm, which helps you find segments of your data that are impossible to see with other analyses, such as business intelligence (BI) and pivot analysis. By analyzing groups returned by K-means, you'll be able to detect outliers that could indicate possible fraud or a bad function in network packets.

By the end of this Microsoft Excel book, you'll be able to use the classification algorithm to group data with different variables. You'll also be able to train linear and time series models to perform predictions and forecasts based on past data.

What you will learn

Understand why machine learning is important for classifying data segmentation
Focus on basic statistics tests for regression variable dependency
Test time series autocorrelation to build a useful forecast
Use Excel add-ins to run K-means without programming
Analyze segment outliers for possible data anomalies and fraud
Build, train, and validate multiple regression models and time series forecasts

Who this book is forThis book is for data and business analysts as well as data science professionals. MIS, finance, and auditing professionals working with MS Excel will also find this book beneficial.

Contents

Table of Contents

Understanding Data Segmentation
Applying Linear Regression
What is Time Series?
An Introduction to Data Grouping
Finding the Optimal Number of Single Variable Groups
Finding the Optimal Number of Multi-Variable Groups
Analyzing Outliers for Data Anomalies
Finding the Relationship between Variables
Building, Training, and Validating a Linear Model
Building, Training, and Validating a Multiple Regression Model
Testing Data for Time Series Compliance
Working with Time Series Using the Centered Moving Average and a Trending Component
Training, Validating, and Running the Model

最近チェックした商品