Enhancing Deep Learning with Bayesian Inference : Create more powerful, robust deep learning systems with Bayesian deep learning in Python

個数:

Enhancing Deep Learning with Bayesian Inference : Create more powerful, robust deep learning systems with Bayesian deep learning in Python

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 386 p.
  • 言語 ENG
  • 商品コード 9781803246888
  • DDC分類 006.31

Full Description

Develop Bayesian Deep Learning models to help make your own applications more robust.

Key Features

Gain insights into the limitations of typical neural networks
Acquire the skill to cultivate neural networks capable of estimating uncertainty
Discover how to leverage uncertainty to develop more robust machine learning systems

Book DescriptionDeep learning has an increasingly significant impact on our lives, from suggesting content to playing a key role in mission- and safety-critical applications. As the influence of these algorithms grows, so does the concern for the safety and robustness of the systems which rely on them. Simply put, typical deep learning methods do not know when they don't know.
The field of Bayesian Deep Learning contains a range of methods for approximate Bayesian inference with deep networks. These methods help to improve the robustness of deep learning systems as they tell us how confident they are in their predictions, allowing us to take more in how we incorporate model predictions within our applications.
Through this book, you will be introduced to the rapidly growing field of uncertainty-aware deep learning, developing an understanding of the importance of uncertainty estimation in robust machine learning systems. You will learn about a variety of popular Bayesian Deep Learning methods, and how to implement these through practical Python examples covering a range of application scenarios.
By the end of the book, you will have a good understanding of Bayesian Deep Learning and its advantages, and you will be able to develop Bayesian Deep Learning models for safer, more robust deep learning systems.What you will learn

Understand advantages and disadvantages of Bayesian inference and deep learning
Understand the fundamentals of Bayesian Neural Networks
Understand the differences between key BNN implementations/approximations
Understand the advantages of probabilistic DNNs in production contexts
How to implement a variety of BDL methods in Python code
How to apply BDL methods to real-world problems
Understand how to evaluate BDL methods and choose the best method for a given task
Learn how to deal with unexpected data in real-world deep learning applications

Who this book is forThis book will cater to researchers and developers looking for ways to develop more robust deep learning models through probabilistic deep learning. You're expected to have a solid understanding of the fundamentals of machine learning and probability, along with prior experience working with machine learning and deep learning models.

Contents

Table of Contents

Bayesian Inference in the Age of Deep Learning
Fundamentals of Bayesian Inference
Fundamentals of Deep Learning
Introducing Bayesian Deep Learning
Principled Approaches for Bayesian Deep Learning
Using the Standard Toolbox for Bayesian Deep Learning
Practical considerations for Bayesian Deep Learning
Applying Bayesian Deep Learning
Next Steps in Bayesian Deep Learning

最近チェックした商品