Data Augmentation with Python : Enhance deep learning accuracy with data augmentation methods for image, text, audio, and tabular data

個数:

Data Augmentation with Python : Enhance deep learning accuracy with data augmentation methods for image, text, audio, and tabular data

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 394 p.
  • 言語 ENG
  • 商品コード 9781803246451
  • DDC分類 006.31

Full Description

Boost your AI and generative AI accuracy using real-world datasets with over 150 functional object-oriented methods and open source libraries
Purchase of the print or Kindle book includes a free PDF eBook

Key Features

Explore beautiful, customized charts and infographics in full color
Work with fully functional OO code using open source libraries in the Python Notebook for each chapter
Unleash the potential of real-world datasets with practical data augmentation techniques

Book DescriptionData is paramount in AI projects, especially for deep learning and generative AI, as forecasting accuracy relies on input datasets being robust. Acquiring additional data through traditional methods can be challenging, expensive, and impractical, and data augmentation offers an economical option to extend the dataset.
The book teaches you over 20 geometric, photometric, and random erasing augmentation methods using seven real-world datasets for image classification and segmentation. You'll also review eight image augmentation open source libraries, write object-oriented programming (OOP) wrapper functions in Python Notebooks, view color image augmentation effects, analyze safe levels and biases, as well as explore fun facts and take on fun challenges. As you advance, you'll discover over 20 character and word techniques for text augmentation using two real-world datasets and excerpts from four classic books. The chapter on advanced text augmentation uses machine learning to extend the text dataset, such as Transformer, Word2vec, BERT, GPT-2, and others. While chapters on audio and tabular data have real-world data, open source libraries, amazing custom plots, and Python Notebook, along with fun facts and challenges.
By the end of this book, you will be proficient in image, text, audio, and tabular data augmentation techniques.What you will learn

Write OOP Python code for image, text, audio, and tabular data
Access over 150,000 real-world datasets from the Kaggle website
Analyze biases and safe parameters for each augmentation method
Visualize data using standard and exotic plots in color
Discover 32 advanced open source augmentation libraries
Explore machine learning models, such as BERT and Transformer
Meet Pluto, an imaginary digital coding companion
Extend your learning with fun facts and fun challenges

Who this book is forThis book is for data scientists and students interested in the AI discipline. Advanced AI or deep learning skills are not required; however, knowledge of Python programming and familiarity with Jupyter Notebooks are essential to understanding the topics covered in this book.

Contents

Table of Contents

Data Augmentation Made Easy
Biases in Data Augmentation
Image Augmentation for Classification
Image Augmentation for Segmentation
Text Augmentation
Text Augmentation with Machine Learning
Audio Data Augmentation
Audio Data Augmentation with Spectrogram
Tabular Data Augmentation

最近チェックした商品