The Handbook of NLP with Gensim : Leverage topic modeling to uncover hidden patterns, themes, and valuable insights within textual data

個数:

The Handbook of NLP with Gensim : Leverage topic modeling to uncover hidden patterns, themes, and valuable insights within textual data

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 310 p.
  • 言語 ENG
  • 商品コード 9781803244945

Full Description

Elevate your natural language processing skills with Gensim and become proficient in handling a wide range of NLP tasks and projects

Key Features

Advance your NLP skills with this comprehensive guide covering detailed explanations and code practices
Build real-world topical modeling pipelines and fine-tune hyperparameters to deliver optimal results
Adhere to the real-world industrial applications of topic modeling in medical, legal, and other fields
Purchase of the print or Kindle book includes a free PDF eBook

Book DescriptionNavigating the terrain of NLP research and applying it practically can be a formidable task made easy with The Handbook of NLP with Gensim. This book demystifies NLP and equips you with hands-on strategies spanning healthcare, e-commerce, finance, and more to enable you to leverage Gensim in real-world scenarios.
You'll begin by exploring motives and techniques for extracting text information like bag-of-words, TF-IDF, and word embeddings. This book will then guide you on topic modeling using methods such as Latent Semantic Analysis (LSA) for dimensionality reduction and discovering latent semantic relationships in text data, Latent Dirichlet Allocation (LDA) for probabilistic topic modeling, and Ensemble LDA to enhance topic modeling stability and accuracy.
Next, you'll learn text summarization techniques with Word2Vec and Doc2Vec to build the modeling pipeline and optimize models using hyperparameters. As you get acquainted with practical applications in various industries, this book will inspire you to design innovative projects. Alongside topic modeling, you'll also explore named entity handling and NER tools, modeling procedures, and tools for effective topic modeling applications.
By the end of this book, you'll have mastered the techniques essential to create applications with Gensim and integrate NLP into your business processes.What you will learn

Convert text into numerical values such as bag-of-word, TF-IDF, and word embedding
Use various NLP techniques with Gensim, including Word2Vec, Doc2Vec, LSA, FastText, LDA, and Ensemble LDA
Build topical modeling pipelines and visualize the results of topic models
Implement text summarization for legal, clinical, or other documents
Apply core NLP techniques in healthcare, finance, and e-commerce
Create efficient chatbots by harnessing Gensim's NLP capabilities

Who this book is forThis book is for data scientists and professionals who want to become proficient in topic modeling with Gensim. NLP practitioners can use this book as a code reference, while students or those considering a career transition will find this a valuable resource for advancing in the field of NLP. This book contains real-world applications for biomedical, healthcare, legal, and operations, making it a helpful guide for project managers designing their own topic modeling applications.

Contents

Table of Contents

Introduction to NLP
Word Embedding
Text Wrangling and Preprocessing
Latent Semantic Analysis with scikit-learn
Cosine Similarity
Latent Semantic Indexing with Gensim
Using Word2Vec
Doc2Vec with Gensim
Understanding Discrete Distributions
Latent Dirichlet Allocation
LDA Modeling
LDA Visualization
The Ensemble LDA for Model Stability
LDA and BERTopic
Real-World Use Cases