Modern Computer Vision with PyTorch : A practical roadmap from deep learning fundamentals to advanced applications and Generative AI (2ND)

個数:

Modern Computer Vision with PyTorch : A practical roadmap from deep learning fundamentals to advanced applications and Generative AI (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 746 p.
  • 言語 ENG
  • 商品コード 9781803231334
  • DDC分類 006.37

Full Description

The definitive computer vision book is back, featuring the latest neural network architectures and an exploration of foundation and diffusion models

Purchase of the print or Kindle book includes a free eBook in PDF format

Key Features

Understand the inner workings of various neural network architectures and their implementation, including image classification, object detection, segmentation, generative adversarial networks, transformers, and diffusion models
Build solutions for real-world computer vision problems using PyTorch
All the code files are available on GitHub and can be run on Google Colab

Book DescriptionWhether you are a beginner or are looking to progress in your computer vision career, this book guides you through the fundamentals of neural networks (NNs) and PyTorch and how to implement state-of-the-art architectures for real-world tasks.

The second edition of Modern Computer Vision with PyTorch is fully updated to explain and provide practical examples of the latest multimodal models, CLIP, and Stable Diffusion.

You'll discover best practices for working with images, tweaking hyperparameters, and moving models into production. As you progress, you'll implement various use cases for facial keypoint recognition, multi-object detection, segmentation, and human pose detection. This book provides a solid foundation in image generation as you explore different GAN architectures. You'll leverage transformer-based architectures like ViT, TrOCR, BLIP2, and LayoutLM to perform various real-world tasks and build a diffusion model from scratch. Additionally, you'll utilize foundation models' capabilities to perform zero-shot object detection and image segmentation. Finally, you'll learn best practices for deploying a model to production.

By the end of this deep learning book, you'll confidently leverage modern NN architectures to solve real-world computer vision problems.What you will learn

Get to grips with various transformer-based architectures for computer vision, CLIP, Segment-Anything, and Stable Diffusion, and test their applications, such as in-painting and pose transfer
Combine CV with NLP to perform OCR, key-value extraction from document images, visual question-answering, and generative AI tasks
Implement multi-object detection and segmentation
Leverage foundation models to perform object detection and segmentation without any training data points
Learn best practices for moving a model to production

Who this book is forThis book is for beginners to PyTorch and intermediate-level machine learning practitioners who want to learn computer vision techniques using deep learning and PyTorch. It's useful for those just getting started with neural networks, as it will enable readers to learn from real-world use cases accompanied by notebooks on GitHub. Basic knowledge of the Python programming language and ML is all you need to get started with this book. For more experienced computer vision scientists, this book takes you through more advanced models in the latter part of the book.

Contents

Table of Contents

Artificial Neural Network Fundamentals
PyTorch Fundamentals
Building a Deep Neural Network with PyTorch
Introducing Convolutional Neural Networks
Transfer Learning for Image Classification
Practical Aspects of Image Classification
Basics of Object Detection
Advanced Object Detection
Image Segmentation
Applications of Object Detection and Segmentation
Autoencoders and Image Manipulation
Image Generation Using GANs
Advanced GANs to Manipulate Images
Combining Computer Vision and Reinforcement Learning
Combining Computer Vision and NLP Techniques
Foundation Models in Computer Vision
Applications of Stable Diffusion
Moving a Model to Production
Appendix

最近チェックした商品