Data Processing with Optimus : Supercharge big data preparation tasks for analytics and machine learning with Optimus using Dask and PySpark

個数:

Data Processing with Optimus : Supercharge big data preparation tasks for analytics and machine learning with Optimus using Dask and PySpark

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 300 p.
  • 言語 ENG
  • 商品コード 9781801079563
  • DDC分類 005.133

Full Description

Written by the core Optimus team, this comprehensive guide will help you to understand how Optimus improves the whole data processing landscape

Key Features

Load, merge, and save small and big data efficiently with Optimus
Learn Optimus functions for data analytics, feature engineering, machine learning, cross-validation, and NLP
Discover how Optimus improves other data frame technologies and helps you speed up your data processing tasks

Book DescriptionOptimus is a Python library that works as a unified API for data cleaning, processing, and merging data. It can be used for handling small and big data on your local laptop or on remote clusters using CPUs or GPUs.

The book begins by covering the internals of Optimus and how it works in tandem with the existing technologies to serve your data processing needs. You'll then learn how to use Optimus for loading and saving data from text data formats such as CSV and JSON files, exploring binary files such as Excel, and for columnar data processing with Parquet, Avro, and OCR. Next, you'll get to grips with the profiler and its data types - a unique feature of Optimus Dataframe that assists with data quality. You'll see how to use the plots available in Optimus such as histogram, frequency charts, and scatter and box plots, and understand how Optimus lets you connect to libraries such as Plotly and Altair. You'll also delve into advanced applications such as feature engineering, machine learning, cross-validation, and natural language processing functions and explore the advancements in Optimus. Finally, you'll learn how to create data cleaning and transformation functions and add a hypothetical new data processing engine with Optimus.

By the end of this book, you'll be able to improve your data science workflow with Optimus easily.

What you will learn

Use over 100 data processing functions over columns and other string-like values
Reshape and pivot data to get the output in the required format
Find out how to plot histograms, frequency charts, scatter plots, box plots, and more
Connect Optimus with popular Python visualization libraries such as Plotly and Altair
Apply string clustering techniques to normalize strings
Discover functions to explore, fix, and remove poor quality data
Use advanced techniques to remove outliers from your data
Add engines and custom functions to clean, process, and merge data

Who this book is forThis book is for Python developers who want to explore, transform, and prepare big data for machine learning, analytics, and reporting using Optimus, a unified API to work with Pandas, Dask, cuDF, Dask-cuDF, Vaex, and Spark. Although not necessary, beginner-level knowledge of Python will be helpful. Basic knowledge of the CLI is required to install Optimus and its requirements. For using GPU technologies, you'll need an NVIDIA graphics card compatible with NVIDIA's RAPIDS library, which is compatible with Windows 10 and Linux.

Contents

Table of Contents

Hi Optimus!
Data Loading, Saving, and File Formats
Data Wrangling
Combining, Reshaping, and Aggregating Data
Data Visualization and Profiling
String Clustering
Feature Engineering
Machine Learning
Natural Language Processing
Hacking Optimus
Optimus as a Web Service

最近チェックした商品