Azure Data Scientist Associate Certification Guide : A hands-on guide to machine learning in Azure and passing the Microsoft Certified DP-100 exam

個数:

Azure Data Scientist Associate Certification Guide : A hands-on guide to machine learning in Azure and passing the Microsoft Certified DP-100 exam

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 448 p.
  • 言語 ENG
  • 商品コード 9781800565005
  • DDC分類 004.6782

Full Description

Develop the skills you need to run machine learning workloads in Azure and pass the DP-100 exam with ease

Key Features

Create end-to-end machine learning training pipelines, with or without code
Track experiment progress using the cloud-based MLflow-compatible process of Azure ML services
Operationalize your machine learning models by creating batch and real-time endpoints

Book DescriptionThe Azure Data Scientist Associate Certification Guide helps you acquire practical knowledge for machine learning experimentation on Azure. It covers everything you need to pass the DP-100 exam and become a certified Azure Data Scientist Associate.

Starting with an introduction to data science, you'll learn the terminology that will be used throughout the book and then move on to the Azure Machine Learning (Azure ML) workspace. You'll discover the studio interface and manage various components, such as data stores and compute clusters.

Next, the book focuses on no-code and low-code experimentation, and shows you how to use the Automated ML wizard to locate and deploy optimal models for your dataset. You'll also learn how to run end-to-end data science experiments using the designer provided in Azure ML Studio.

You'll then explore the Azure ML Software Development Kit (SDK) for Python and advance to creating experiments and publishing models using code. The book also guides you in optimizing your model's hyperparameters using Hyperdrive before demonstrating how to use responsible AI tools to interpret and debug your models. Once you have a trained model, you'll learn to operationalize it for batch or real-time inferences and monitor it in production.

By the end of this Azure certification study guide, you'll have gained the knowledge and the practical skills required to pass the DP-100 exam.

What you will learn

Create a working environment for data science workloads on Azure
Run data experiments using Azure Machine Learning services
Create training and inference pipelines using the designer or code
Discover the best model for your dataset using Automated ML
Use hyperparameter tuning to optimize trained models
Deploy, use, and monitor models in production
Interpret the predictions of a trained model

Who this book is forThis book is for developers who want to infuse their applications with AI capabilities and data scientists looking to scale their machine learning experiments in the Azure cloud. Basic knowledge of Python is needed to follow the code samples used in the book. Some experience in training machine learning models in Python using common frameworks like scikit-learn will help you understand the content more easily.

Contents

Table of Contents

An Overview of Modern Data Science
Deploying Azure Machine Learning Workspace Resources
Azure Machine Learning Studio Components
Configuring the Workspace
Letting the Machines Do the Model Training
Visual Model Training and Publishing
The AzureML Python SDK
Experimenting with Python Code
Optimizing the ML Model
Understanding Model Results
Working with Pipelines
Operationalizing Models with Code

最近チェックした商品