The Deep Learning with Keras Workshop : Learn how to define and train neural network models with just a few lines of code

個数:

The Deep Learning with Keras Workshop : Learn how to define and train neural network models with just a few lines of code

  • オンデマンド(OD/POD)版です。キャンセルは承れません。

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 496 p.
  • 言語 ENG
  • 商品コード 9781800562967
  • DDC分類 006.76

Full Description

Discover how to leverage Keras, the powerful and easy-to-use open source Python library for developing and evaluating deep learning models

Key Features

Get to grips with various model evaluation metrics, including sensitivity, specificity, and AUC scores
Explore advanced concepts such as sequential memory and sequential modeling
Reinforce your skills with real-world development, screencasts, and knowledge checks

Book DescriptionNew experiences can be intimidating, but not this one! This beginner's guide to deep learning is here to help you explore deep learning from scratch with Keras, and be on your way to training your first ever neural networks.

What sets Keras apart from other deep learning frameworks is its simplicity. With over two hundred thousand users, Keras has a stronger adoption in industry and the research community than any other deep learning framework.

The Deep Learning with Keras Workshop starts by introducing you to the fundamental concepts of machine learning using the scikit-learn package. After learning how to perform the linear transformations that are necessary for building neural networks, you'll build your first neural network with the Keras library. As you advance, you'll learn how to build multi-layer neural networks and recognize when your model is underfitting or overfitting to the training data. With the help of practical exercises, you'll learn to use cross-validation techniques to evaluate your models and then choose the optimal hyperparameters to fine-tune their performance. Finally, you'll explore recurrent neural networks and learn how to train them to predict values in sequential data.

By the end of this book, you'll have developed the skills you need to confidently train your own neural network models.

What you will learn

Gain insights into the fundamentals of neural networks
Understand the limitations of machine learning and how it differs from deep learning
Build image classifiers with convolutional neural networks
Evaluate, tweak, and improve your models with techniques such as cross-validation
Create prediction models to detect data patterns and make predictions
Improve model accuracy with L1, L2, and dropout regularization

Who this book is forIf you know the basics of data science and machine learning and want to get started with advanced machine learning technologies like artificial neural networks and deep learning, then this is the book for you. To grasp the concepts explained in this deep learning book more effectively, prior experience in Python programming and some familiarity with statistics and logistic regression are a must.

Contents

Table of Contents

Introduction to Machine Learning with Keras
Machine Learning versus Deep Learning
Deep Learning with Keras
Evaluating your Model with Cross-Validation Using Keras Wrappers
Improving Model Accuracy
Model Evaluation
Computer Vision with Convolutional Neural Networks
Transfer Learning and Pre-Trained Models
Sequential Modeling with Recurrent Neural Networks

最近チェックした商品