The the Reinforcement Learning Workshop : Learn how to apply cutting-edge reinforcement learning algorithms to a wide range of control problems

個数:

The the Reinforcement Learning Workshop : Learn how to apply cutting-edge reinforcement learning algorithms to a wide range of control problems

  • オンデマンド(OD/POD)版です。キャンセルは承れません。

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 822 p.
  • 言語 ENG
  • 商品コード 9781800200456
  • DDC分類 005.7

Full Description

Start with the basics of reinforcement learning and explore deep learning concepts such as deep Q-learning, deep recurrent Q-networks, and policy-based methods with this practical guide

Key Features

Use TensorFlow to write reinforcement learning agents for performing challenging tasks
Learn how to solve finite Markov decision problems
Train models to understand popular video games like Breakout

Book DescriptionVarious intelligent applications such as video games, inventory management software, warehouse robots, and translation tools use reinforcement learning (RL) to make decisions and perform actions that maximize the probability of the desired outcome. This book will help you to get to grips with the techniques and the algorithms for implementing RL in your machine learning models.

Starting with an introduction to RL, you'll be guided through different RL environments and frameworks. You'll learn how to implement your own custom environments and use OpenAI baselines to run RL algorithms. Once you've explored classic RL techniques such as Dynamic Programming, Monte Carlo, and TD Learning, you'll understand when to apply the different deep learning methods in RL and advance to deep Q-learning. The book will even help you understand the different stages of machine-based problem-solving by using DARQN on a popular video game Breakout. Finally, you'll find out when to use a policy-based method to tackle an RL problem.

By the end of The Reinforcement Learning Workshop, you'll be equipped with the knowledge and skills needed to solve challenging problems using reinforcement learning.

What you will learn

Use OpenAI Gym as a framework to implement RL environments
Find out how to define and implement reward function
Explore Markov chain, Markov decision process, and the Bellman equation
Distinguish between Dynamic Programming, Monte Carlo, and Temporal Difference Learning
Understand the multi-armed bandit problem and explore various strategies to solve it
Build a deep Q model network for playing the video game Breakout

Who this book is forIf you are a data scientist, machine learning enthusiast, or a Python developer who wants to learn basic to advanced deep reinforcement learning algorithms, this workshop is for you. A basic understanding of the Python language is necessary.

Contents

Table of Contents

Introduction to Reinforcement Learning
Markov Decision Processes and Bellman Equations
Deep Learning in Practice with TensorFlow 2
Getting Started with OpenAI and TensorFlow for Reinforcement Learning
Dynamic Programming
Monte Carlo Methods
Temporal Difference Learning
The Multi-Armed Bandit Problem
What Is Deep Q Learning?
Playing an Atari Game with Deep Recurrent Q Networks
Policy-Based Methods for Reinforcement Learning
Evolutionary Strategies for RL

最近チェックした商品