Python応用深層学習<br>Applied Deep Learning with Python : Use scikit-learn, TensorFlow, and Keras to create intelligent systems and machine learning solutions

個数:

Python応用深層学習
Applied Deep Learning with Python : Use scikit-learn, TensorFlow, and Keras to create intelligent systems and machine learning solutions

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 334 p.
  • 言語 ENG
  • 商品コード 9781789804744

Full Description

A hands-on guide to deep learning that's filled with intuitive explanations and engaging practical examples

Key Features

Designed to iteratively develop the skills of Python users who don't have a data science background
Covers the key foundational concepts you'll need to know when building deep learning systems
Full of step-by-step exercises and activities to help build the skills that you need for the real-world

Book DescriptionTaking an approach that uses the latest developments in the Python ecosystem, you'll first be guided through the Jupyter ecosystem, key visualization libraries and powerful data sanitization techniques before we train our first predictive model. We'll explore a variety of approaches to classification like support vector networks, random decision forests and k-nearest neighbours to build out your understanding before we move into more complex territory. It's okay if these terms seem overwhelming; we'll show you how to put them to work.

We'll build upon our classification coverage by taking a quick look at ethical web scraping and interactive visualizations to help you professionally gather and present your analysis. It's after this that we start building out our keystone deep learning application, one that aims to predict the future price of Bitcoin based on historical public data.

By guiding you through a trained neural network, we'll explore common deep learning network architectures (convolutional, recurrent, generative adversarial) and branch out into deep reinforcement learning before we dive into model optimization and evaluation. We'll do all of this whilst working on a production-ready web application that combines Tensorflow and Keras to produce a meaningful user-friendly result, leaving you with all the skills you need to tackle and develop your own real-world deep learning projects confidently and effectively.

What you will learn

Discover how you can assemble and clean your very own datasets
Develop a tailored machine learning classification strategy
Build, train and enhance your own models to solve unique problems
Work with production-ready frameworks like Tensorflow and Keras
Explain how neural networks operate in clear and simple terms
Understand how to deploy your predictions to the web

Who this book is forIf you're a Python programmer stepping into the world of data science, this is the ideal way to get started.

Contents

Table of Contents

Jupyter Fundamentals
Data Cleaning and Advanced Machine Learning
Web Scraping and Interactive Visualizations
Introduction to Neural Networks and Deep Learning
Model Architecture
Model Evaluation
Productization

最近チェックした商品