Hands-On Neural Network Programming with C# : Add powerful neural network capabilities to your C# enterprise applications

個数:
  • ポイントキャンペーン

Hands-On Neural Network Programming with C# : Add powerful neural network capabilities to your C# enterprise applications

  • ウェブストア価格 ¥9,149(本体¥8,318)
  • Packt Publishing Limited(2018/09発売)
  • 外貨定価 US$ 43.99
  • 【ウェブストア限定】ブラックフライデーポイント5倍対象商品(~11/24)※店舗受取は対象外
  • ポイント 415pt
  • オンデマンド(OD/POD)版です。キャンセルは承れません。

  • ウェブストア価格 ¥8,819(本体¥8,018)
  • Packt Publishing Limited(2018/09発売)
  • 外貨定価 UK£ 30.99
  • 【ウェブストア限定】ブラックフライデーポイント5倍対象商品(~11/24)※店舗受取は対象外
  • ポイント 400pt
  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 328 p.
  • 言語 ENG
  • 商品コード 9781789612011
  • DDC分類 005.133

Full Description

Create and unleash the power of neural networks by implementing C# and .Net code

Key Features

Get a strong foundation of neural networks with access to various machine learning and deep learning libraries
Real-world case studies illustrating various neural network techniques and architectures used by practitioners
Cutting-edge coverage of Deep Networks, optimization algorithms, convolutional networks, autoencoders and many more

Book DescriptionNeural networks have made a surprise comeback in the last few years and have brought tremendous innovation in the world of artificial intelligence.

The goal of this book is to provide C# programmers with practical guidance in solving complex computational challenges using neural networks and C# libraries such as CNTK, and TensorFlowSharp. This book will take you on a step-by-step practical journey, covering everything from the mathematical and theoretical aspects of neural networks, to building your own deep neural networks into your applications with the C# and .NET frameworks.

This book begins by giving you a quick refresher of neural networks. You will learn how to build a neural network from scratch using packages such as Encog, Aforge, and Accord. You will learn about various concepts and techniques, such as deep networks, perceptrons, optimization algorithms, convolutional networks, and autoencoders. You will learn ways to add intelligent features to your .NET apps, such as facial and motion detection, object detection and labeling, language understanding, knowledge, and intelligent search.

Throughout this book, you will be working on interesting demonstrations that will make it easier to implement complex neural networks in your enterprise applications.

What you will learn

Understand perceptrons and how to implement them in C#
Learn how to train and visualize a neural network using cognitive services
Perform image recognition for detecting and labeling objects using C# and TensorFlowSharp
Detect specific image characteristics such as a face using Accord.Net
Demonstrate particle swarm optimization using a simple XOR problem and Encog
Train convolutional neural networks using ConvNetSharp
Find optimal parameters for your neural network functions using numeric and heuristic optimization techniques.

Who this book is forThis book is for Machine Learning Engineers, Data Scientists, Deep Learning Aspirants and Data Analysts who are now looking to move into advanced machine learning and deep learning with C#. Prior knowledge of machine learning and working experience with C# programming is required to take most out of this book

Contents

Table of Contents

A Quick Refresher
Building our first Neural Network Together
Decision Tress and Random Forests
Face and Motion Detection
Training CNNs using ConvNetSharp
Training Autoencoders Using RNNSharp
Replacing Back Propagation with PSO
Function Optimizations; How and Why
Finding Optimal Parameters
Object Detection with TensorFlowSharp
Time Series Prediction and LSTM Using CNTK
GRUs Compared to LSTMs, RNNs, and Feedforward Networks
Appendix A- Activation Function Timings
Appendix B- Function Optimization Reference

最近チェックした商品