Machine Learning in Geomechanics 2 : Data-Driven Modeling, Bayesian Inference, Physics- and Thermodynamics-based Artificial Neural Networks and Reinforcement Learning (Iste Consignment)

個数:
電子版価格
¥20,562
  • 電子版あり

Machine Learning in Geomechanics 2 : Data-Driven Modeling, Bayesian Inference, Physics- and Thermodynamics-based Artificial Neural Networks and Reinforcement Learning (Iste Consignment)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 304 p.
  • 言語 ENG
  • 商品コード 9781789451931
  • DDC分類 624.151

Full Description

Machine learning has led to incredible achievements in many different fields of science and technology. These varied methods of machine learning all offer powerful new tools to scientists and engineers and open new paths in geomechanics.

The two volumes of Machine Learning in Geomechanics aim to demystify machine learning. They present the main methods and provide examples of its applications in mechanics and geomechanics. Most of the chapters provide a pedagogical introduction to the most important methods of machine learning and uncover the fundamental notions underlying them.

Building from the simplest to the most sophisticated methods of machine learning, the books give several hands-on examples of coding to assist readers in understanding both the methods and their potential and identifying possible pitfalls.

Contents

Preface ix
Ioannis STEFANOU and Félix DARVE

Chapter 1. Data-Driven Modeling in Geomechanics .. 1
Konstantinos KARAPIPERIS

1.1. Introduction 2

1.2. Data-driven computational mechanics 3

1.2.1. Cauchy continuum - elasticity 3

1.2.2. Micropolar continuum - elasticity 6

1.2.3. Extension to inelasticity 10

1.2.4. Data sampling 11

1.3. Applications 15

1.4. Conclusions 17

1.5. References 17

Chapter 2 Bayesian Inference in Geomechanics 25
Dhruv V. PATEL, Jonghyun "Harry" LEE, Peter K. KITANIDIS and Eric F. DARVE

2.1. Introduction 26

2.2. Inverse problems 26

2.2.1. Regularization methods 28

2.2.2. Bayesian inversion 30

2.3. Machine learning-assisted Bayesian inference 33

2.3.1. Informative and accurate prior characterization with deep generative modeling 34

2.3.2. Computationally inexpensive likelihood evaluation with operator learning 40

2.3.3. Efficient posterior inference in a black-box setting 44

2.4. Conclusion 49

2.5. References 50

Chapter 3 Physics-Informed and Thermodynamics-Based Neural Networks 57
Filippo MASI and Ioannis STEFANOU

3.1. Introduction 58

3.2. Physics-informed neural networks 60

3.2.1. Methodology 61

3.2.2. Hands-on example 63

3.3. Thermodynamics-based neural networks 68

3.3.1. Theoretical framework 70

3.3.2. Methodology 75

3.3.3. Digital twins of granular materials: a pedagogic example 80

3.3.4. Speed up multiscale simulations 87

3.4. Conclusions 93

3.5. Acknowledgments 95

3.6. References 95

Chapter 4 Introduction to Reinforcement Learning with Applications in Geomechanics 101
Alexandros STATHAS, Diego GUTIÉRREZ-ORIBIO and Ioannis STEFANOU

4.1. Introduction 102

4.2. Reinforcement learning: the basics 106

4.2.1. Basic definitions: deterministic case 106

4.2.2. Probabilistic environment and stochastic policies 120

4.2.3. Function approximation 146

4.2.4. Summing up 153

4.2.5. AC Network 155

4.3. Applications to geomechanics 156

4.3.1. Control theory: the basics 156

4.3.2. Reduced model for earthquakes: the spring-slider 159

4.3.3. Controlling induced seismicity in a geothermal reservoir 171

4.4. Conclusions 178

4.5. Acknowledgment 180

4.6. References 180

Chapter 5 Artificial Neural Networks: Basic Architectures and Training Strategies 185
Filippo GATTI

5.1. Neural networks 187

5.1.1. The artificial neuron 187

5.1.2. The multi-layer perceptron 191

5.1.3. Why MLP? 196

5.1.4. How to improve the MLP accuracy? 208

5.1.5. From neurons to filters 211

5.1.6. Deep convolutional architectures 227

5.1.7. Time-forward prediction 233

5.1.8. Recurrent neural networks 234

5.1.9. Long-short term memory 240

5.2. Automatic differentiation 243

5.2.1. Updating weights with the chain rule 244

5.2.2. Effective backward propagation 247

5.2.3. Countermeasures to vanishing gradients 255

5.2.4. Back-propagation through time 265

5.3. References 269

List of Authors 277

Index 279

Summary of Volume 1 283

最近チェックした商品