Hands-On Artificial Intelligence for IoT : Expert machine learning and deep learning techniques for developing smarter IoT systems

個数:

Hands-On Artificial Intelligence for IoT : Expert machine learning and deep learning techniques for developing smarter IoT systems

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 390 p.
  • 言語 ENG
  • 商品コード 9781788836067
  • DDC分類 006.3

Full Description

Build smarter systems by combining artificial intelligence and the Internet of Things—two of the most talked about topics today

Key Features

Leverage the power of Python libraries such as TensorFlow and Keras to work with real-time IoT data
Process IoT data and predict outcomes in real time to build smart IoT models
Cover practical case studies on industrial IoT, smart cities, and home automation

Book DescriptionThere are many applications that use data science and analytics to gain insights from terabytes of data. These apps, however, do not address the challenge of continually discovering patterns for IoT data. In Hands-On Artificial Intelligence for IoT, we cover various aspects of artificial intelligence (AI) and its implementation to make your IoT solutions smarter.

This book starts by covering the process of gathering and preprocessing IoT data gathered from distributed sources. You will learn different AI techniques such as machine learning, deep learning, reinforcement learning, and natural language processing to build smart IoT systems. You will also leverage the power of AI to handle real-time data coming from wearable devices. As you progress through the book, techniques for building models that work with different kinds of data generated and consumed by IoT devices such as time series, images, and audio will be covered. Useful case studies on four major application areas of IoT solutions are a key focal point of this book. In the concluding chapters, you will leverage the power of widely used Python libraries, TensorFlow and Keras, to build different kinds of smart AI models.

By the end of this book, you will be able to build smart AI-powered IoT apps with confidence.

What you will learn

Apply different AI techniques including machine learning and deep learning using TensorFlow and Keras
Access and process data from various distributed sources
Perform supervised and unsupervised machine learning for IoT data
Implement distributed processing of IoT data over Apache Spark using the MLLib and H2O.ai platforms
Forecast time-series data using deep learning methods
Implementing AI from case studies in Personal IoT, Industrial IoT, and Smart Cities
Gain unique insights from data obtained from wearable devices and smart devices

Who this book is forIf you are a data science professional or a machine learning developer looking to build smart systems for IoT, Hands-On Artificial Intelligence for IoT is for you. If you want to learn how popular artificial intelligence (AI) techniques can be used in the Internet of Things domain, this book will also be of benefit. A basic understanding of machine learning concepts will be required to get the best out of this book.

Contents

Table of Contents

Principles and Foundations of IoT and AI
Data Access and Distributed Processing for IoT
Machine Learning for IoT
Deep Learning for IoT
Genetic Algorithms for IoT
Reinforcement Learning for IoT
GAN for IoT
Distributed AI for IoT
Personal and Home and IoT
AI for Industrial IoT
AI for Smart Cities IoT
Combining It All Together