PySpark Cookbook : Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python

個数:

PySpark Cookbook : Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 330 p.
  • 言語 ENG
  • 商品コード 9781788835367
  • DDC分類 005.74

Full Description

Combine the power of Apache Spark and Python to build effective big data applications

About This Book

• Perform effective data processing, machine learning, and analytics using PySpark
• Overcome challenges in developing and deploying Spark solutions using Python
• Explore recipes for efficiently combining Python and Apache Spark to process data

Who This Book Is For

The PySpark Cookbook is for you if you are a Python developer looking for hands-on recipes for using the Apache Spark 2.x ecosystem in the best possible way. A thorough understanding of Python (and some familiarity with Spark) will help you get the best out of the book.

What You Will Learn

• Configure a local instance of PySpark in a virtual environment
• Install and configure Jupyter in local and multi-node environments
• Create DataFrames from JSON and a dictionary using pyspark.sql
• Explore regression and clustering models available in the ML module
• Use DataFrames to transform data used for modeling
• Connect to PubNub and perform aggregations on streams

In Detail

Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. The PySpark Cookbook presents effective and time-saving recipes for leveraging the power of Python and putting it to use in the Spark ecosystem.
You'll start by learning the Apache Spark architecture and how to set up a Python environment for Spark. You'll then get familiar with the modules available in PySpark and start using them effortlessly. In addition to this, you'll discover how to abstract data with RDDs and DataFrames, and understand the streaming capabilities of PySpark. You'll then move on to using ML and MLlib in order to solve any problems related to the machine learning capabilities of PySpark and use GraphFrames to solve graph-processing problems. Finally, you will explore how to deploy your applications to the cloud using the spark-submit command.
By the end of this book, you will be able to use the Python API for Apache Spark to solve any problems associated with building data-intensive applications.

Style and approach

This book is a rich collection of recipes that will come in handy when you are working with PySpark
Addressing your common and not-so-common pain points, this is a book that you must have on the shelf.

最近チェックした商品