Hands-On Ensemble Learning with R : A beginner's guide to combining the power of machine learning algorithms using ensemble techniques

個数:

Hands-On Ensemble Learning with R : A beginner's guide to combining the power of machine learning algorithms using ensemble techniques

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 376 p.
  • 言語 ENG
  • 商品コード 9781788624145
  • DDC分類 006.31

Full Description

Explore powerful R packages to create predictive models using ensemble methods

Key Features

Implement machine learning algorithms to build ensemble-efficient models
Explore powerful R packages to create predictive models using ensemble methods
Learn to build ensemble models on large datasets using a practical approach

Book DescriptionEnsemble techniques are used for combining two or more similar or dissimilar machine learning algorithms to create a stronger model. Such a model delivers superior prediction power and can give your datasets a boost in accuracy.

Hands-On Ensemble Learning with R begins with the important statistical resampling methods. You will then walk through the central trilogy of ensemble techniques - bagging, random forest, and boosting - then you'll learn how they can be used to provide greater accuracy on large datasets using popular R packages. You will learn how to combine model predictions using different machine learning algorithms to build ensemble models. In addition to this, you will explore how to improve the performance of your ensemble models.

By the end of this book, you will have learned how machine learning algorithms can be combined to reduce common problems and build simple efficient ensemble models with the help of real-world examples.

What you will learn

Carry out an essential review of re-sampling methods, bootstrap, and jackknife
Explore the key ensemble methods: bagging, random forests, and boosting
Use multiple algorithms to make strong predictive models
Enjoy a comprehensive treatment of boosting methods
Supplement methods with statistical tests, such as ROC
Walk through data structures in classification, regression, survival, and time series data
Use the supplied R code to implement ensemble methods
Learn stacking method to combine heterogeneous machine learning models

Who this book is forThis book is for you if you are a data scientist or machine learning developer who wants to implement machine learning techniques by building ensemble models with the power of R. You will learn how to combine different machine learning algorithms to perform efficient data processing. Basic knowledge of machine learning techniques and programming knowledge of R would be an added advantage.

Contents

Table of Contents

Introduction to Ensemble Techniques
Bootstrapping
Bagging
Random Forests
The Bare Bones Boosting Algorithms
Boosting Refinements
The General Ensemble Technique
Ensemble Diagnostics
Ensembling Regression Models
Ensembling Survival Models
Ensembling Time Series Models
What's Next?

最近チェックした商品