Mastering Geospatial Analysis with Python : Explore GIS processing and learn to work with GeoDjango, CARTOframes and MapboxGL-Jupyter

個数:

Mastering Geospatial Analysis with Python : Explore GIS processing and learn to work with GeoDjango, CARTOframes and MapboxGL-Jupyter

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 440 p.
  • 言語 ENG
  • 商品コード 9781788293334
  • DDC分類 910.285

Full Description

Explore GIS processing and learn to work with various tools and libraries in Python.

About This Book

• Analyze and process geospatial data using Python libraries such as; Anaconda, GeoPandas
• Leverage new ArcGIS API to process geospatial data for the cloud.
• Explore various Python geospatial web and machine learning frameworks.

Who This Book Is For

The audience for this book includes students, developers, and geospatial professionals who need a reference book that covers GIS data management, analysis, and automation techniques with code libraries built in Python 3.

What You Will Learn

• Manage code libraries and abstract geospatial analysis techniques using Python 3.
• Explore popular code libraries that perform specific tasks for geospatial analysis.
• Utilize code libraries for data conversion, data management, web maps, and REST API creation.
• Learn techniques related to processing geospatial data in the cloud.
• Leverage features of Python 3 with geospatial databases such as PostGIS, SQL Server, and SpatiaLite.

In Detail

Python comes with a host of open source libraries and tools that help you work on professional geoprocessing tasks without investing in expensive tools. This book will introduce Python developers, both new and experienced, to a variety of new code libraries that have been developed to perform geospatial analysis, statistical analysis, and data management. This book will use examples and code snippets that will help explain how Python 3 differs from Python 2, and how these new code libraries can be used to solve age-old problems in geospatial analysis.
You will begin by understanding what geoprocessing is and explore the tools and libraries that Python 3 offers. You will then learn to use Python code libraries to read and write geospatial data. You will then learn to perform geospatial queries within databases and learn PyQGIS to automate analysis within the QGIS mapping suite. Moving forward, you will explore the newly released ArcGIS API for Python and ArcGIS Online to perform geospatial analysis and create ArcGIS Online web maps. Further, you will deep dive into Python Geospatial web frameworks and learn to create a geospatial REST API.

Style and approach

The book takes a practical, example-driven approach to teach you GIS analysis and automation techniques with Python 3.

Contents

Table of Contents

Package installation and management
Introduction to geospatial code libraries
Introduction to geospatial databases
Data types, storage and conversion
Vector data analysis
Raster data processing
Geoprocessing with geodatabases
Automating QGIS analysis
ArcGIS API for Python and ArcGIS Online
Geoprocessing with a GPU Database
Flask and GeoAlchemy
GeoDjango
Creating a geospatial REST API
Cloud Geodatabase Analysis and Visualization
Automating Cloud Cartography
Python geoprocessing with Hadoop