Traditional Functional-Discrete Methods for the Problems of Mathematical Physics : New Aspects

個数:
電子版価格
¥20,984
  • 電子版あり

Traditional Functional-Discrete Methods for the Problems of Mathematical Physics : New Aspects

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 352 p.
  • 言語 ENG
  • 商品コード 9781786309334
  • DDC分類 530.158

Full Description

This book is devoted to the construction and study of approximate methods for solving mathematical physics problems in canonical domains. It focuses on obtaining weighted a priori estimates of the accuracy of these methods while also considering the influence of boundary and initial conditions. This influence is quantified by means of suitable weight functions that characterize the distance of an inner point to the boundary of the domain.

New results are presented on boundary and initial effects for the finite difference method for elliptic and parabolic equations, mesh schemes for equations with fractional derivatives, and the Cayley transform method for abstract differential equations in Hilbert and Banach spaces. Due to their universality and convenient implementation, the algorithms discussed throughout can be used to solve a wide range of actual problems in science and technology. The book is intended for scientists, university teachers, and graduate and postgraduate students who specialize in the field of numerical analysis.

Contents

Preface ix

Introduction xi

Chapter 1 Elliptic Equations in Canonical Domains with the Dirichlet Condition on the Boundary or its Part 1

1.1 A standard finite-difference scheme for Poisson's equation with mixed boundary conditions 1

1.2 A nine-point finite-difference scheme for Poisson's equation with the Dirichlet boundary condition 18

1.3 A finite-difference scheme of the higher order of approximation for Poisson's equation with the Dirichlet boundary condition 31

1.4 A finite-difference scheme for the equation with mixed derivatives 46

Chapter 2 Parabolic Equations in Canonical Domains with the Dirichlet Condition on the Boundary or its Part 69

2.1 A standard finite-difference scheme for the one-dimensional heat equation with mixed boundary conditions 69

2.2 A standard finite-difference scheme for the two-dimensional heat equation with mixed boundary conditions 82

2.3 A standard finite-difference scheme for the two-dimensional heat equation with the Dirichlet boundary condition 102

Chapter 3 Differential Equations with Fractional Derivatives 115

3.1 BVP for a differential equation with constant coefficients and a fractional derivative of order ½ 115

3.2 BVP for a differential equation with constant coefficients and a fractional derivative of order α ∈ (0,1) 124

3.3 BVP for a differential equation with variable coefficients and a fractional derivative of order α ∈ (0,1) 145

3.4 Two-dimensional differential equation with a fractional derivative 166

3.5 The Goursat problem with fractional derivatives 181

Chapter 4 The Abstract Cauchy Problem 213

4.1 The approximation of the operator exponential function in a Hilbert space 213

4.2 Inverse theorems for the operator sine and cosine functions 230

4.3 The approximation of the operator exponential function in a Banach space 236

4.4 Conclusion 247

Chapter 5 The Cayley Transform Method for Abstract Differential Equations 249

5.1 Exact and approximate solutions of the BVP in a Hilbert space 249

5.2 Exact and approximate solutions of the BVP in a Banach space 282

References 307

Index 315