Materials and Thermodynamics

個数:
電子版価格
¥22,423
  • 電子版あり

Materials and Thermodynamics

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 304 p.
  • 言語 ENG
  • 商品コード 9781786302083
  • DDC分類 620

Full Description

A thermodynamic system is defined according to its environment and its compliance. This book promotes the classification of materials from generalized thermodynamics outside the equilibrium state and not solely according to their chemical origin.

The author goes beyond standard classification of materials and extends it to take into account the living, ecological, economic and financial systems in which they exist: all these systems can be classified according to their deviation from an ideal situation of thermodynamic equilibrium.   

The concepts of dynamic complexity and hierarchy, emphasizing the crucial role played by cycles and rhythms, then become fundamental. Finally, the limitations of the uniqueness of this description that depend on thermodynamic foundations based on the concepts of energy and entropy are discussed in relation to the cognitive sciences.

Contents

Preface xi

Introduction xiii

Chapter 1 Form and Matter: The Genesis of Materials 1

1.1 Role and evolution of geometric shapes in chemistry 2

1.1.1 Shape and matter: the origins 2

1.1.2 From the Renaissance to modern chemistry 4

1.1.3 Modern era 6

1.2 Contributions of complexity of forms and thermodynamics 9

1.2.1 Development of more complex forms 9

1.2.2 Introduction to generalized thermodynamics 11

1.2.3 Toward a classification of materials 13

1.3 Perspectives 14

Chapter 2 Thermodynamics of Condensed Matter 15

2.1 Definitions in thermodynamics 16

2.1.1 Concept of a thermodynamic system 16

2.1.2 Review of thermodynamic equilibrium states 17

2.1.3 Energy transformations and efficiency 20

2.1.4 Systems without thermodynamic equilibrium 23

2.2 Examples of hardware systems 26

2.2.1 Responses close to equilibrium 27

2.2.2 Responses far from equilibrium 29

2.2.3 Role of chemical reactors 33

2.3 Material development and characterization 36

2.3.1 Situation close to equilibrium: crystallogenesis 36

2.3.2 Situation far from equilibrium: morphogenesis 40

2.3.3 Production processes 43

2.4 Conclusion 43

Chapter 3 Classification of Materials 45

3.1 Role of surfaces and interfaces 46

3.1.1 Nature and symmetry of a phase separation 46

3.1.2 Classification according to the requirements 47

3.1.3 Composition of a system 47

3.1.4 Type of responses and functionality 49

3.2 Main types of materials and systems 50

3.2.1 Structural materials 50

3.2.2 Electronic operators and transmitters 53

3.2.3 Optical devices 58

3.2.4 Adsorbers and chemical sensors 64

3.2.5 Actuators and their analogues 69

3.3 Conclusion 69

Chapter 4 Materials and Devices for Energy and Information 71

4.1 Conversion and storage of electrical energy 71

4.1.1 Direct conversion electric generators 72

4.1.2 Indirect production and use of electricity 80

4.1.3 Storage of energy 83

4.2 Recording and storing information 85

4.2.1 Main features 86

4.2.2 Main types of memories 87

4.3 Conclusion 92

Chapter 5 Microscopic Models and Statistical Thermodynamics 95

5.1 Typical microscopic models 95

5.1.1 Law of distribution and definition of statistical entropy 96

5.1.2 Thermodynamic systems and canonical ensembles 97

5.1.3 Situations beyond equilibrium 98

5.1.4 Stochastic thermodynamics 100

5.2 Quantum statistics 101

5.2.1 Review of concepts 101

5.2.2 Quantum distribution laws 101

5.2.3 Elementary excitations and quantum particles in solids 103

5.3 Information theory 105

5.3.1 Shannon-Brillouin model 105

5.3.2 Energy and information: the Landauer principle 106

5.3.3 The role of quantum mechanics 108

5.3.4 Remarks on the notion of information and the concept of entropy 110

5.4 Conclusion 112

Chapter 6 Nanomaterials 113

6.1 The new classes of materials 113

6.1.1 Conjugate conductive polymers 114

6.1.2 Charge transfer salts and complexes 115

6.1.3 Molecular carbonaceous phases 116

6.1.4 Other nanomaterials 118

6.2 Nanometric assemblies and manipulations 118

6.2.1 Thin film techniques and imposed structures 119

6.2.2 Supramolecular chemistry and the colloidal approach 120

6.2.3 Nanowires and nanocomposites 123

6.2.4 Detection and manipulation of particles 124

6.2.5 Molecular recognition, nanosensors and actuators 126

6.3 Conclusion 128

Chapter 7 Engineering and Molecular Electronics 129

7.1 Nanotechnologies 129

7.1.1 Nanoelectronics 129

7.1.2 Nanophotonics 133

7.1.3 Nanomagnetism 138

7.1.4 Nanomachines 141

7.2 Memory and quantum logic 143

7.2.1 Quantum phenomena 143

7.2.2 Experimental devices 144

7.2.3 Information, thermodynamics and quantum chaos 147

7.3 State of the art: nanomaterials and quantum electronics 148

Chapter 8 Living World, Biomaterials and Biosystems 149

8.1 Living systems and energy balances 150

8.1.1 On the definition of the living world 150

8.1.2 Thermodynamic model 152

8.1.3 Conversion and storage of energy 154

8.1.4 Operation of a cell reactor 158

8.2 Biomaterials and biosystems 158

8.2.1 Morphogenesis and biomimicry 159

8.2.2 Biodetectors and similar functions 162

8.2.3 Bioconverters and natural energy sources 165

8.2.4 Engines, receptors and bionic robots 170

8.2.5 Bioinformatics 171

8.2.6 Biosynthesis 174

8.3 Conclusion 175

Chapter 9 Extensions to Living Organisms and Ecology 177

9.1 Behavior of cells and organs 178

9.1.1 Biochemical oscillations and biological rhythms 178

9.1.2 Spatiotemporal organizations and Turing structures 180

9.1.3 Rhythms and chaos in certain organs 182

9.1.4 Neural networks, information and cognitive behavior 183

9.2 Physiology of a living organism 187

9.2.1 Thermodynamic system and metabolism 187

9.2.2 Collective behavior 189

9.3 Ecosystems and natural cycles 190

9.3.1 The predator-prey relationship 191

9.3.2 Grand natural cycles 193

9.3.3 Climate models 194

9.4 Conclusion 196

Chapter 10 Application of Thermodynamics to Economy 199

10.1 Thermodynamic models of economy 200

10.1.1 Chronology of energy models 200

10.1.2 Analysis of fundamental concepts 205

10.2 Dynamics of economic and financial systems 209

10.2.1 Economic cycles 209

10.2.2 Analysis of financial fluctuations 210

10.2.3 Stock market crashes 211

10.2.4 Statistical modeling of financial systems 212

10.2.5 On the behavior of a financial system 214

10.3 Conclusion 215

Chapter 11 From Thermodynamic Systems to Complex Systems 217

11.1 Thermodynamic models: from energy to entropy 218

11.1.1 Modeling of a thermodynamic system 218

11.1.2 Entropy and information 221

11.2 Classification of materials and devices 224

11.2.1 Functional advanced materials 224

11.2.2 Nanomaterials and quantum mechanics 225

11.2.3 Biomaterials inspired by living environments 226

11.2.4 Extension to living organisms, ecological and economic systems 227

11.3 Rhythms, complexity and synergy of dynamic systems 228

11.3.1 From the analysis of shape to functionality 228

11.3.2 Scale analysis and organizational hierarchy 229

11.3.3 Constraints and flows: characteristic oscillations and cycles 230

11.3.4 Dynamic and cybernetic systems 231

11.3.5 Toward a definition of complex systems 233

11.4 Epilogue: descriptive uniqueness and limitation of thermodynamic bases 235

Glossary 237

Bibliography 243

Index 267

最近チェックした商品