Chi-squared Goodness-of-fit Tests for Censored Data

個数:
電子版価格
¥22,575
  • 電子版あり

Chi-squared Goodness-of-fit Tests for Censored Data

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 158 p.
  • 言語 ENG
  • 商品コード 9781786300003
  • DDC分類 511

Full Description

This book is devoted to the problems of construction and application of chi-squared goodness-of-fit tests for complete and censored data. Classical chi-squared tests assume that unknown distribution parameters are estimated using grouped data, but in practice this assumption is often forgotten. In this book, we consider modified chi-squared tests, which do not suffer from such a drawback. The authors provide examples of chi-squared tests for various distributions widely used in practice, and also consider chi-squared tests for the parametric proportional hazards model and accelerated failure time model, which are widely used in reliability and survival analysis. Particular attention is paid to the choice of grouping intervals and simulations.

This book covers recent innovations in the field as well as important results previously only published in Russian. Chi-squared tests are compared with other goodness-of-fit tests (such as the Cramer-von Mises-Smirnov, Anderson-Darling and Zhang tests) in terms of power when testing close competing hypotheses.

Contents

Introduction ix

Chapter 1. Chi-squared Goodness-of-fit Tests for Complete Data 1

1.1. Classical Pearson's chi-squared test 1

1.2. Joint distribution of Xn(θ∗n)and√n(θ∗n-θ) 3

1.3. Parameter estimation based on complete data Lemma of Chernoff and Lehmann 5

1.4. Parameter estimation based on grouped data. Theorem of Fisher 10

1.5. Nikulin-Rao-Robson chi-squared test 12

1.6. Other modifications 18

1.7. The choice of grouping intervals 20

Chapter 2. Chi-squared Test for Censored Data 31

2.1. Generalized Pearson-Fisher chi-squared test 32

2.2. Maximum likelihood estimators for censored data 34

2.3. Nikulin-Rao-Robson chi-squared test for censored data 38

2.4. The choice of grouping intervals 45

2.4.1. Equifrequent grouping (EFG) 45

2.4.2. Intervals with equal expected numbers of failures (EENFG) 46

2.4.3. Optimal grouping (OptG) 48

2.5. Chi-squared tests for specific families of distributions 51

2.5.1. Exponential distribution 51

2.5.2. Weibull distribution 55

2.5.3. Lognormal distribution 60

2.5.4. Loglogistic distribution 63

2.5.5. Gompertz distribution 67

Chapter 3. Comparison of the Chi-squared Goodness-of-fit Test with Other Tests 71

3.1. Tests based on the difference between non-parametric and parametric estimators 71

3.2. Comparison of goodness-of-fit tests for complete data 76

3.3. Comparison of goodness-of-fit tests for censored data 79

3.3.1. Lognormal-generalized Weibull pair of competing hypotheses 80

3.3.2. Exponential-Weibull pair of competing hypotheses 82

3.3.3. Weibull-generalized Weibull pairs of competing hypotheses 84

Chapter 4. Chi-squared Goodness-of-fit Tests for Regression Models 87

4.1. Data and the idea of chi-squared test construction 89

4.2. Asymptotic distribution of the random vector Z 91

4.3. Test statistic 96

4.4. Choice of random grouping intervals 97

4.4.1. Test for the exponential AFT model 99

4.4.2. Tests for the scale-shape AFT models with constant covariates 101

4.4.3. Test for the Weibull AFT model with step-stresses 108

Appendices 111

Appendix 1 113

Appendix 2 125

Bibliography 131

Index 141

最近チェックした商品