- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
The scientific research in many engineering fields has been shifting from traditional first-principle-based to data-driven or evidence-based theories. The latter methods may enable better system design, based on more accurate and verifiable information.
In the era of big data, IoT and cyber-physical systems, this subject is of growing importance, as data-driven approaches are key enablers to solve problems that could not be addressed by standard approaches. This book presents a number of innovative data-driven methodologies, complemented by significant application examples, to show the potential offered by the most recent advances in the field. Applicable across a range of disciplines, the topics discussed here will be of interest to scientists, engineers and students in automatic control and learning systems, automotive and aerospace engineering, electrical engineering and signal processing.
Contents
Chapter 1: Introduction
Part I: Data-driven modeling
Chapter 2: A kernel-based approach to supervised nonparametric identification of Wiener systems
Chapter 3: Identification of a quasi-LPV model for wing-flutter analysis using machine-learning techniques
Chapter 4: Experimental modeling of a web-winding machine: LPV approaches
Chapter 5: In situ identification of electrochemical impedance spectra for Li-ion batteries
Part II: Data-driven filtering and control
Chapter 6: Dynamic measurement
Chapter 7: Multivariable iterative learning control: analysis and designs for engineering applications
Chapter 8: Algorithms for data-driven H∞-norm estimation
Chapter 9: A comparative study of VRFT and set-membership data-driven controller design techniques: active suspension tuning case
Chapter 10: Relative accuracy of two methods for approximating observed Fisher information
Chapter 11: A hierarchical approach to data-driven LPV control design of constrained systems
Chapter 12: Set membership fault detection for nonlinear dynamic systems
Chapter 13: Robust data-driven control of systems with nonlinear distortions