Applications of Machine Learning in Wireless Communications (Telecommunications)

個数:

Applications of Machine Learning in Wireless Communications (Telecommunications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 490 p.
  • 言語 ENG
  • 商品コード 9781785616570
  • DDC分類 621.3820285631

Full Description

Machine learning explores the study and development of algorithms that can learn from and make predictions and decisions based on data. Applications of machine learning in wireless communications have been receiving a lot of attention, especially in the era of big data and IoT, where data mining and data analysis technologies are effective approaches to solving wireless system evaluation and design issues.

This edited book presents current and future developments and trends in wireless communication technologies based on contributions from machine learning and other fields of artificial intelligence, including channel modelling, signal estimation and detection, energy efficiency, cognitive radios, wireless sensor networks, vehicular communications, and wireless multimedia communications. The book is aimed at a readership of researchers, engineers and students working on wireless communications and machine learning, especially those working with big data and artificial intelligence multi-disciplinary fields related to wireless communication technologies.

Contents

Chapter 1: Introduction of machine learning
Chapter 2: Machine-learning-enabled channel modeling
Chapter 3: Channel prediction based on machine-learning algorithms
Chapter 4: Machine-learning-based channel estimation
Chapter 5: Signal identification in cognitive radios using machine learning
Chapter 6: Compressive sensing for wireless sensor networks
Chapter 7: Reinforcement learning-based channel sharing in wireless vehicular networks
Chapter 8: Machine-learning-based perceptual video coding in wireless multimedia communications
Chapter 9: Machine-learning-based saliency detection and its video decoding application in wireless multimedia communications
Chapter 10: Deep learning for indoor localization based on bimodal CSI data
Chapter 11: Reinforcement-learning-based wireless resource allocation
Chapter 12: Q-learning-based power control in small-cell networks
Chapter 13: Data-driven vehicular mobility modeling and prediction

最近チェックした商品