Apache Mahout Clustering Designs

個数:

Apache Mahout Clustering Designs

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 130 p.
  • 言語 ENG
  • 商品コード 9781783284436
  • DDC分類 006.31

Full Description

Explore clustering algorithms used with Apache Mahout

About This Book

• Use Mahout for clustering datasets and gain useful insights
• Explore the different clustering algorithms used in day-to-day work
• A practical guide to create and evaluate your own clustering models using real world data sets

Who This Book Is For

This book is for developers who want to try out clustering on large datasets using Mahout. It will also be useful for those users who don't have background in Mahout, but have knowledge of basic programming and are familiar with basics of machine learning and clustering. It will be helpful if you know about clustering techniques with some other tool.

What You Will Learn

• Explore clustering algorithms and cluster evaluation techniques
• Learn different types of clustering and distance measuring techniques
• Perform clustering on your data using K-Means clustering
• Discover how canopy clustering is used as pre-process step for K-Means
• Use the Fuzzy K-Means algorithm in Apache Mahout
• Implement Streaming K-Means clustering in Mahout
• Learn Spectral K-Means clustering implementation of Mahout

In Detail

As more and more organizations are discovering the use of big data analytics, interest in platforms that provide storage, computation, and analytic capabilities has increased. Apache Mahout caters to this need and paves the way for the implementation of complex algorithms in the field of machine learning to better analyse your data and get useful insights into it.
Starting with the introduction of clustering algorithms, this book provides an insight into Apache Mahout and different algorithms it uses for clustering data. It provides a general introduction of the algorithms, such as K-Means, Fuzzy K-Means, StreamingKMeans, and how to use Mahout to cluster your data using a particular algorithm. You will study the different types of clustering and learn how to use Apache Mahout with real world data sets to implement and evaluate your clusters.
This book will discuss about cluster improvement and visualization using Mahout APIs and also explore model-based clustering and topic modelling using Dirichlet process. Finally, you will learn how to build and deploy a model for production use.

Style and approach

This book is a hand's-on guide with examples using real-world datasets. Each chapter begins by explaining the algorithm in detail and follows up with showing how to use mahout for that algorithm using example data-sets.

最近チェックした商品