The Application of Probability Theory

個数:

The Application of Probability Theory

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 399 p.
  • 言語 ENG
  • 商品コード 9781774698617

Full Description

The Application of Probability Theory is a comprehensive book that explores the diverse applications of probability theory across various fields, ranging from statistics and data analysis to machine learning and artificial intelligence, medical and health sciences, natural language processing, information retrieval, and engineering. The book delves into the fundamental principles and concepts of probability theory, such as sample space, events, probability distribution, random variables, probability laws, and expected value, and highlights the distinctions between frequentist and Bayesian approaches. With a collection of contemporaneous articles, it presents cutting-edge research and practical examples that showcase the relevance and impact of probability theory in understanding uncertainty, making predictions, assessing risks, designing experiments, and conducting statistical inference. Whether it's developing statistical models for missing data, enhancing machine learning algorithms with probability information, optimizing clinical trial designs for Alzheimer's disease, predicting urinary tract infections, or detecting fake news and hate speech, this book serves as a valuable resource for researchers, practitioners, and students seeking a deeper understanding of the applications of probability theory in today's rapidly evolving world.

Contents

Chapter 1 Introduction
Chapter 2 Missing Data Approaches for Probability Regression Models with Missing Outcomes with Applications
Chapter 3 Maximum Likelihood Estimation for Three-Parameter Weibull Distribution Using Evolutionary Strategy
Chapter 4 Probability Distribution and Deviation Information Fusion Driven Support Vector Regression Model and its Application
Chapter 5 Cascade Source Inference in Networks: a Markov Chain Monte Carlo Approach
Chapter 6 PICF-LDA: A Topic Enhanced LDA with Probability Incremental Correction Factor for Web API Service Clustering
Chapter 7 The Development of a Stochastic Mathematical Model of Alzheimer's Disease to Help Improve the Design of Clinical Trials of Potential Treatments
Chapter 8 Comparison of Neural Network and Logistic Regression Analysis to Predict the Probability of Urinary Tract Infection Caused by Cystoscopy
Chapter 9 Statistical Analysis of Orthographic and Phonemic Language Corpus for Word-Based and Phoneme-Based Polish Language Modelling
Chapter 10 Detection of Fake News and Hate Speech for Ethiopian Languages: A Systematic Review of the Approaches
Chapter 11 Comparison between the Hamiltonian Monte Carlo Method and the Metropolis-Hastings Method for Coseismic Fault Model Estimation
Chapter 12 Sequential Monte Carlo Method Toward Online RUL Assessment with Applications
Chapter 13 Probabilistic Forecasting of Traffic Flow Using Multikernel Based Extreme Learning Machine
Chapter 14 Value-at-Risk under Ambiguity Aversion
Chapter 15 DAViS: A Unified Solution for Data Collection, Analyzation, and Visualization in Real-Time Stock Market Prediction

最近チェックした商品