- ホーム
- > 洋書
- > 英文書
- > Computer / General
Full Description
Deep Learning Crash Course goes beyond the basics of machine learning to delve into modern techniques and applications of great interest right now, and whose popularity will only grow in the future. The book covers topics such as generative models (the technology behind deep fakes), self-supervised learning, attention mechanisms (the tech behind ChatGPT), graph neural networks (the tech behind AlphaFold), and deep reinforcement learning (the tech behind AlphaGo). This book bridges the gap between theory and practice, helping readers gain the confidence to apply deep learning in their work.
Contents
Introduction
Chapter 1: Building and Training Your First Neural Network
Chapter 2: Capturing Trends and Recognizing Patterns with Dense Neural Networks
Chapter 3: Processing Images with Convolutional Neural Networks
Chapter 4: Enhancing, Generating, and Analyzing Data with Autoencoders
Chapter 5: Segmenting and Analyzing Images with U-Nets
Chapter 6: Training Neural Networks with Self-Supervised Learning
Chapter 7: Processing Time Series and Language with Recurrent Neural Networks
Chapter 8: Processing Language and Classifying Images with Attention and Transformers
Chapter 9: Creating and Transforming Images with Generative Adversarial Networks
Chapter 10: Implementing Generative AI with Diffusion Models
Chapter 11: Modeling Molecules and Complex Systems with Graph Neural Networks
Chapter 12: Continuously Improving Performance with Active Learning
Chapter 13: Mastering Decision-Making with Deep Reinforcement Learning
Chapter 14: Predicting Chaos with Reservoir Computing
Conclusion
Index



