Neurosymbolic Programming (Foundations and Trends® in Programming Languages)

個数:

Neurosymbolic Programming (Foundations and Trends® in Programming Languages)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 98 p.
  • 言語 ENG
  • 商品コード 9781680839340
  • DDC分類 006.31

Full Description

Neurosymbolic programming is an emerging area that bridges the areas of deep learning and program synthesis. As in classical machine learning, the goal is to learn functions from data. However, these functions are represented as programs that can use neural modules in addition to symbolic primitives and are induced using a combination of symbolic search and gradient-based optimization.

Neurosymbolic programming can offer multiple advantages over end-to-end deep learning. Programs can sometimes naturally represent long-horizon, procedural tasks that are difficult to perform using deep networks. Neurosymbolic representations are also, commonly, easier to interpret and formally verify than neural networks. The restrictions of a programming language can serve as a form of regularization and lead to more generalizable and data-efficient learning. Compositional programming abstractions can also be a natural way of reusing learned modules across learning tasks.In this monograph, the authors illustrate these potential benefits with concrete examples from recent work on neurosymbolic programming. They also categorize the main ways in which symbolic and neural learning techniques come together in this area and conclude with a discussion of the open technical challenges in the field. The comprehensive review of neurosymbolic programming introduces the reader to the topic and provides an insightful treatise on an increasingly important topic at the intersection of programming languages and machine learning.

Contents

1. Introduction
2. The Landscape of Neurosymbolic Programming
3. Motivating Goals
4. Learning Algorithms
5. Conclusion
References

最近チェックした商品