An Algorithmic Perspective on Imitation Learning (Foundations and Trends in Robotics)

個数:
  • ポイントキャンペーン

An Algorithmic Perspective on Imitation Learning (Foundations and Trends in Robotics)

  • ウェブストア価格 ¥19,795(本体¥17,996)
  • now publishers Inc(2018/03発売)
  • 外貨定価 US$ 99.00
  • 【ウェブストア限定】サマー!ポイント5倍キャンペーン 対象商品(~7/21)※店舗受取は対象外
  • ポイント 895pt
  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 194 p.
  • 言語 ENG
  • 商品コード 9781680834109

Full Description

As robots and other intelligent agents move from simple environments and problems to more complex, unstructured settings, manually programming their behavior has become increasingly challenging and expensive. Often, it is easier for a teacher to demonstrate a desired behavior rather than attempt to manually engineer it. This process of learning from demonstrations, and the study of algorithms to do so, is called imitation learning. An Algorithmic Perspective on Imitation Learning provides the reader with an introduction to imitation learning. It covers the underlying assumptions, approaches, and how they relate; the rich set of algorithms developed to tackle the problem; and advice on effective tools and implementation. An Algorithmic Perspective on Imitation Learning serves two audiences. First, it familiarizes machine learning experts with the challenges of imitation learning, particularly those arising in robotics, and the interesting theoretical and practical distinctions between it and more familiar frameworks like statistical supervised learning theory and reinforcement learning. Second, it provides roboticists and experts in applied artificial intelligence with a broader appreciation for the frameworks and tools available for imitation learning. It pays particular attention to the intimate connection between imitation learning approaches and those of structured prediction.

Contents

1. Introduction 2. Design of Imitation Learning Algorithms 3. Behavioral Cloning 4. Inverse Reinforcement Learning 5. Challenges in Imitation Learning for Robotics. Acknowledgements. References.

最近チェックした商品