Introduction to Online Convex Optimization (Foundations and Trends® in Optimization)

個数:

Introduction to Online Convex Optimization (Foundations and Trends® in Optimization)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 190 p.
  • 言語 ENG
  • 商品コード 9781680831702
  • DDC分類 519.6

Full Description

Introduction to Online Convex Optimization portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

It is intended to serve as a reference for a self-contained course on online convex optimization and the convex optimization approach to machine learning for the educated graduate student in computer science/electrical engineering/operations research/statistics and related fields. It is also an ideal reference for the researcher diving into this fascinating world at the intersection of optimization and machine learning.

Contents

Preface 1: Introduction
2: Basic concepts in convex optimization
3: First Order Algorithms for Online Convex Optimization
4: Second Order Methods
5: Regularization
6: Bandit Convex Optimization
7: Projection-free Algorithms
8: Games, Duality and Regret
9: Learning Theory, Generalization and OCO
References

最近チェックした商品