Fast Uncovering of Graph Communities on a Chip : Toward Scalable Community Detection on Multicore and Manycore Platforms (Foundations and Trends® in Electronic Design Automation)

個数:

Fast Uncovering of Graph Communities on a Chip : Toward Scalable Community Detection on Multicore and Manycore Platforms (Foundations and Trends® in Electronic Design Automation)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 120 p.
  • 言語 ENG
  • 商品コード 9781680831320
  • DDC分類 629.8

Full Description

Graph representations are pervasive in scientific and social computing. They serve as vital tools to model the interplay between different interacting entities. This monograph delves into the problem of community detection, which is one of the most widely used graph operations toward scientific discovery. Community detection refers to the process of identifying tightly-knit subgroups of vertices in a large graph. These sub-groups (or communities) represent vertices that are tied together through common structure or function. Identification of communities could help in understanding the modular organization of complex networks. However, owing to large data sizes and high computational costs, performing community detection at scale has become increasingly challenging.

This monograph presents a detailed review and analysis of some of the leading computational methods and implementations developed for executing community detection on modern day multicore and manycore architectures. The intention is to: a) define the problem of community detection and highlight its scientific significance; b) relate to challenges in parallelizing the operation on modern day architectures; c) provide a detailed report and logical organization of the approaches that have been designed for various architectures; and d) provide insights into the strengths and suitability of different architectures for community detection, and a preview into the future trends of the area. While the focus is on community detection, the challenges, and techniques to overcome the challenges, transcend to several other graph problems that have applications in science and data analytics.

Contents

1: Graphs and Community Detection
2: Community Detection: Background and Problem Definition
3: Classical Algorithms
4: Multithreaded Platforms
5: Parallelization Challenges
6: Parallel Algorithms and Implementations
7: Results and Analysis
8: Emerging Network-on-Chip Architectures and Simulation Studies
9: Discussion and Future Trends
References

最近チェックした商品