Handbook on Neurosymbolic AI and Knowledge Graphs

個数:

Handbook on Neurosymbolic AI and Knowledge Graphs

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9781643685786
  • DDC分類 006.3

Full Description

Neural approaches have traditionally excelled at perceptual tasks like pattern recognition, whereas symbolic frameworks have offered powerful methods for knowledge representation, logical inference, and interpretability, but the current AI landscape is increasingly defined by hybrid systems that blend these complementary paradigms. This is particularly relevant in the context of knowledge graphs (KGs), which serve as a bridge between symbolic logic and the subsymbolic world of deep learning. The Handbook on Neurosymbolic AI and Knowledge Graphs deals with state-of-the-art neurosymbolic and KG-based AI, reflecting an ecosystem in which large language models, deep neural networks, and symbolic representations converge. It illustrates the progress that has been made, while also revealing emerging challenges in trustworthiness, interpretability, and scalability. The first four chapters are on the foundations of neural and symbolic AI. In the following chapters the authors explore the nuances of KG representation and embeddings, moving on to KG construction, integration, and quality, and covering challenges such as entity alignment, canonicalization, fusion, and the critical aspect of uncertainty management. Offering solutions that seamlessly combine symbolic logic with deep learning pipelines, the handbook deals with question answering, program synthesis, and dynamic KG methods, before moving on to the need to ensure transparency, accountability, and trust in systems operating on increasingly complex data. The final chapters demonstrate problem solving across news analytics, literary studies, life sciences, food computing, social media, and more. This work offers a comprehensive overview of these intersecting fields and will be of interest to researchers and developers looking for a practical guide to building AI systems that are robust, transparent, and ethically grounded.

最近チェックした商品