Social Learning : Opinion Formation and Decision-Making over Graphs

個数:

Social Learning : Opinion Formation and Decision-Making over Graphs

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 484 p.
  • 言語 ENG
  • 商品コード 9781638284727

Full Description

Complex cognitive systems, such as social networks, robotic swarms, or biological networks, are composed of individual entities (the agents) whose actions typically arise from some sophisticated form of "social" interaction with other agents. For example, consider the way humans form their individual opinions about a certain phenomenon. The opinions take shape via repeated interactions with other individuals, whether through physical contact or virtually. A diffusion mechanism emerges through which opinions, information, or even fake news propagate.

Social learning also arises over man-made systems in the form of decision-making strategies by multiple agents interacting over a network. Consider a robotic swarm deployed over a hazardous area, where some robots operating under disadvantageous conditions (e.g., with limited visibility or partial information) would only be able to perform their task (such as saving a life during a rescue operation) by leveraging significant cooperation from other robots that have better access to critical information. Nature itself provides many other excellent examples of cooperative learning in the form of biological networks.

The main topic of this book relates to mechanisms for information diffusion and decision-making over graphs, and the study of how agents' decisions evolve dynamically through interactions with neighbors and the environment.

Contents

Dedication

Preface

Chapter 1. Introduction

Chapter 2. Bayesian Learning

Chapter 3. From Single-Agent to Social Learning

Chapter 4. Network Models

Chapter 5. Social Learning with Geometric Averaging

Chapter 6. Error Probability Performance

Chapter 7. Social Learning with Arithmetic Averaging

Chapter 8. Adaptive Social Learning

Chapter 9. Learning Accuracy under ASL

Chapter 10. Adaptation under ASL

Chapter 11. Partial Information Sharing

Chapter 12. Social Machine Learning

Chapter 13. Extensions and Conclusions

Appendices

References

About the Authors

最近チェックした商品