Interactive Imitation Learning in Robotics : A Survey (Foundations and Trends® in Robotics)

個数:

Interactive Imitation Learning in Robotics : A Survey (Foundations and Trends® in Robotics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 212 p.
  • 言語 ENG
  • 商品コード 9781638281269
  • DDC分類 629.892

Full Description

Existing robotics technology is still mostly limited to being used by expert programmers who can adapt the systems to new required conditions, but not flexible and adaptable by non-expert workers or end-users. Imitation Learning (IL) has obtained considerable attention as a potential direction for enabling all kinds of users to easily program the behavior of robots or virtual agents. Interactive Imitation Learning (IIL) is a branch of Imitation Learning (IL) where human feedback is provided intermittently during robot execution allowing an online improvement of the robot's behavior.

In this monograph, research in IIL is presented and low entry barriers for new practitioners are facilitated by providing a survey of the field that unifies and structures it. In addition, awareness of its potential is raised, what has been accomplished and what are still open research questions being covered.

Highlighted are the most relevant works in IIL in terms of human-robot interaction (i.e., types of feedback), interfaces (i.e., means of providing feedback), learning (i.e., models learned from feedback and function approximators), user experience (i.e., human perception about the learning process), applications, and benchmarks. Furthermore, similarities and differences between IIL and Reinforcement Learning (RL) are analyzed, providing a discussion on how the concepts offline, online, off-policy and on-policy learning should be transferred to IIL from the RL literature.

Particular focus is given to robotic applications in the real world and their implications are discussed, and limitations and promising future areas of research are provided.

Contents

1. Introduction
2. Theoretical Background
3. Modalities of Interaction
4. Behavior Representations Learned from Interactions
5. Auxiliary Models
6. Model Representations (Function Approximation)
7. On/Off Policy Learning
8. Reinforcement Learning with Human-in-the-Loop
9. Interfaces
10. User Studies in IIL
11. Benchmarks and Applications
12. Research Challenges and Opportunities
13. Conclusion
Author Contributions
Glossary
References

最近チェックした商品