Factor Extraction in Dynamic Factor Models : Kalman Filter Versus Principal Components (Foundations and Trends® in Econometrics)

個数:

Factor Extraction in Dynamic Factor Models : Kalman Filter Versus Principal Components (Foundations and Trends® in Econometrics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 124 p.
  • 言語 ENG
  • 商品コード 9781638280965

Full Description

Factor Extraction in Dynamic Factor Models: Kalman Filter Versus Principal Components surveys the literature on factor extraction in the context of Dynamic Factor Models (DFMs) fitted to multivariate systems of economic and financial variables. Many of the most popular factor extraction procedures often used in empirical applications are based on either Principal Components (PC) or Kalman filter and smoothing (KFS) techniques. First, the authors show that the KFS factors are a weighted average of the contemporaneous information (PC factors) and the past information and that the weights of the latter are negligible unless the factors are closed to the non-stationarity boundary and/or their loadings are pretty small when compared with the variance-covariance matrix of the idiosyncratic components. Second, the authors survey how PC and KFS deal with several issues often faced in the context of extracting factors from real data systems. In particular, they describe PC and KFS procedures to deal with mixed frequencies and missing observations, structural breaks, non-stationarity, Markov-switching parameters or multi-level factor structures. In general, KFS is very flexible to deal with these issues.

Contents

1. Introduction
2. Factor Extraction in Stationary and Static DFMs
3. Non-Stationary Dynamic Factor Models
4. Structural Breaks, Time-Varying Parameters and Markov-Switching DFMs
5. Multi-Level Dynamic Factor Models
6. Matrix-Valued Dynamic Factor Models
7. Missing Observations and Mixed-Frequency Variables
8. Final Remarks
Acknowledgements
References

最近チェックした商品