Model-based Reinforcement Learning : A Survey (Foundations and Trends® in Machine Learning)

個数:

Model-based Reinforcement Learning : A Survey (Foundations and Trends® in Machine Learning)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 130 p.
  • 言語 ENG
  • 商品コード 9781638280569
  • DDC分類 006.31

Full Description

Sequential decision making, commonly formalized as Markov Decision Process (MDP) optimization, is an important challenge in artificial intelligence. Two key approaches to this problem are reinforcement learning (RL) and planning. This monograph surveys an integration of both fields, better known as model-based reinforcement learning. Model-based RL has two main steps: dynamics model learning and planning-learning integration. In this comprehensive survey of the topic, the authors first cover dynamics model learning, including challenges such as dealing with stochasticity, uncertainty, partial observability, and temporal abstraction. They then present a systematic categorization of planning-learning integration, including aspects such as: where to start planning, what budgets to allocate to planning and real data collection, how to plan, and how to integrate planning in the learning and acting loop.

In conclusion the authors discuss implicit model-based RL as an end-to-end alternative for model learning and planning, and cover the potential benefits of model-based RL. Along the way, the authors draw connections to several related RL fields, including hierarchical RL and transfer learning. This monograph contains a broad conceptual overview of the combination of planning and learning for Markov Decision Process optimization. It provides a clear and complete introduction to the topic for students and researchers alike.

Contents

1. Introduction
2. Background
3. Categories of Model-based Reinforcement Learning
4. Dynamics Model Learning
5. Integration of Planning and Learning
6. Implicit Model-based Reinforcement Learning
7. Benefits of Model-based Reinforcement Learning
8. Theory of Model-based Reinforcement Learning
9. Related Work
10. Discussion
11. Summary
References

最近チェックした商品