Statistical Analysis of Networks (Nowopen)

個数:

Statistical Analysis of Networks (Nowopen)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 250 p.
  • 言語 ENG
  • 商品コード 9781638280507
  • DDC分類 003

Full Description

This book is a general introduction to the statistical analysis of networks, and can serve both as a research monograph and as a textbook. Numerous fundamental tools and concepts needed for the analysis of networks are presented, such as network modeling, community detection, graph-based semi-supervised learning and sampling in networks. The description of these concepts is self-contained, with both theoretical justifications and applications provided for the presented algorithms.Researchers, including postgraduate students, working in the area of network science, complex network analysis, or social network analysis, will find up-to-date statistical methods relevant to their research tasks. This book can also serve as textbook material for courses related to thestatistical approach to the analysis of complex networks.In general, the chapters are fairly independent and self-supporting, and the book could be used for course composition "à la carte". Nevertheless, Chapter 2 is needed to a certain degree for all parts of the book. It is also recommended to read Chapter 4 before reading Chapters 5 and 6, but this is not absolutely necessary. Reading Chapter 3 can also be helpful before reading Chapters 5 and 7. As prerequisites for reading this book, a basic knowledge in probability, linear algebra and elementary notions of graph theory is advised. Appendices describing required notions from the above mentioned disciplines have been added to help readers gain further understanding.

Contents

1. Introduction
2. Random Graph Models
3. Network Centrality Indices
4. Community Detection in Networks
5. Graph-based Semi-Supervised Learning
6. Community Detection in Temporal Networks
7. Sampling in Networks
8. Appendices

最近チェックした商品