Build a Machine Learning Platform (From Scratch)

個数:
  • 予約

Build a Machine Learning Platform (From Scratch)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 475 p.
  • 言語 ENG
  • 商品コード 9781633437333

Full Description

Machine learning models look great in notebooks, then collapse in production. Ready to build an ML platform that actually delivers? Here's a step-by-step, project-driven guide to building an MLOps-ready platform from scratch. 

Inside you'll find: 



Step-by-step ML pipeline assembly: A true "from-scratch" playbook that assembles an end-to-end MLOps stack. 



Deploy machine learning models to production: Combine Kubeflow, MLflow, BentoML, Feast, and Evidently without vendor lock-in. 



Build end-to-end data pipelines: Move seamlessly from raw data to monitored, live predictions. 



Robust deployment patterns: Serve fast, scalable models that stay responsive under real traffic. 



Effective monitoring and explainability: Detect drift early and keep stakeholders confident. 

Build a Machine Learning Platform (From Scratch) by Benjamin Tan Wei Hao, Shanoop Padmanabhan, and Varun Mallya delivers a practical field guide in print and eBook formats. Three veteran engineers lead you through every layer of modern MLOps. 

The chapters construct two reference systems, an image classifier and a recommendation engine, while teaching orchestration, training, serving, and monitoring techniques. The actionable items for each concept include sample code, architecture diagrams, and checklists. 

By the end of this book, you will end up with a reusable blueprint that slashes deployment time, reduces firefighting, and thrives with team growth. You will start shipping platforms that thrive. 

Ideal for Python-savvy data scientists and software engineers eager to master production-quality machine learning.

Contents

PART 1: LAYING THE FOUNDATIONS 

1. GETTING STARTED WITH MLOPS AND ML ENGINEERING

2. WHAT IS MLOPS?

3. BUILDING APPLICATIONS ON KUBERNETES

4. DESIGNING RELIABLE ML SYSTEMS

5. ORCHESTRATING ML PIPELINES

6. PRODUCTIONIZING ML MODELS

PART 2: DEVELOPING REAL-WORLD ML PIPELINES 

7. DATA ANALYSIS & PREPARATION

8. MODEL TRAINING AND VALIDATION: PART 1

9. MODEL TRAINING AND VALIDATION: PART 2

10. MODEL INFERENCE AND SERVING

PART 3: CLOSING THE LOOP 

11. MONITORING AND EXPLAINABILITY

APPENDICES 

APPENDIX A: INSTALLATION AND SETUP 

APPENDIX B: BASICS OF YAML 

APPENDIX C: TABLE OF TOOLS

最近チェックした商品