Deep Learning with Python, Third Edition (3RD)

個数:
  • 予約

Deep Learning with Python, Third Edition (3RD)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 648 p.
  • 言語 ENG
  • 商品コード 9781633436589

Full Description

Why wait to master deep learning when the tools are already within reach? As AI reshapes every industry, learning how to build models like GPT or generate stunning images is no longer a luxury—it is a necessity. Many developers struggle with fragmented tutorials or outdated libraries, leaving them unsure how to translate theory into practice. What if you could gain hands-on experience with the latest tools and techniques, backed by expert guidance, and build models that deliver real results from the start? 



First-principles walkthroughs: Understand every layer, activation, and optimizer, so troubleshooting feels natural. 



Keras 3 showcase: Use the newest API features for faster, cleaner model pipelines. 



Multiframework primer: Compare TensorFlow, PyTorch, and JAX to pick the right tool every time. 



Generative AI chapters: Craft text with your own GPT-style model and create images using diffusion. 



Production guidance: Learn scaling, tuning, and deployment tips that move notebooks into real apps. 

Deep Learning with Python, Third Edition, by François Chollet and Matthew Watson, delivers an authoritative, code-first roadmap from the minds behind Keras. 

Each chapter builds knowledge step by step, pairing intuitive explanations with color-coded listings you can run immediately. Expanded coverage tackles transformers, diffusion, and hardware-friendly workflows while retaining the approachable tone that made previous editions bestsellers. 

By the final page you will confidently architect, train, and fine-tune state-of-the-art models, ready to solve vision, language, and forecasting problems in your own projects. 

Ideal for developers with intermediate Python skills who crave practical, future-proof AI expertise.

Contents

1 WHAT IS DEEP LEARNING?  

2 THE MATHEMATICAL BUILDING BLOCKS OF NEURAL NETWORKS 

3 INTRODUCTION TO TENSORFLOW, PYTORCH, JAX, AND KERAS 

4 CLASSIFICATION AND REGRESSION 

5 FUNDAMENTALS OF MACHINE LEARNING 

6 THE UNIVERSAL WORKFLOW OF MACHINE LEARNING 

7 A DEEP DIVE ON KERAS 

8 IMAGE CLASSIFICATION 

9 CONVNET ARCHITECTURE PATTERNS 

10 INTERPRETING WHAT CONVNETS LEARN 

11 IMAGE SEGMENTATION 

12 OBJECT DETECTION 

13 TIMESERIES FORECASTING 

14 TEXT CLASSIFICATION 

15 LANGUAGE MODELS AND THE TRANSFORMER 

16 TEXT GENERATION 

17 IMAGE GENERATION 

18 BEST PRACTICES FOR THE REAL WORLD 

19 THE FUTURE OF AI 

20 CONCLUSIONS

最近チェックした商品