Battery Management Systems, Volume III: Physics-Based Methods

個数:

Battery Management Systems, Volume III: Physics-Based Methods

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 360 p.
  • 言語 ENG
  • 商品コード 9781630819040

Full Description

This book -- the third and final volume in a series describing battery-management systems - shows you how to use physics-based models of battery cells in a computationally efficient way for optimal battery-pack management and control to maximize battery-pack performance and extend life. It covers the foundations of electrochemical model-based battery management system while introducing and teaching the state of the art in physics-based methods for battery management.

 

Building upon the content in volumes I and II, the book helps you identify parameter values for physics-based models of a commercial lithium-ion battery cell without requiring cell teardown; shows you how to estimate the internal electrochemical state of all cells in a battery pack in a computationally efficient way during operation using these physics-based models; demonstrates the use the models plus state estimates in a battery management system to optimize fast-charge of battery packs to minimize charge time while also maximizing battery service life; and takes you step-by-step through the use models to optimize the instantaneous power that can be demanded from the battery pack while also maximizing battery service life.

 

The book also demonstrates how to overcome the primary roadblocks to implementing physics-based method for battery management: the computational-complexity roadblock, the parameter-identification roadblock, and the control-optimization roadblock. It also uncovers the fundamental flaw in all present "state of art" methods and shows you why all BMS based on equivalent-circuit models must be designed with over-conservative assumptions. This is a strong resource for battery engineers, chemists, researchers, and educators who are interested in advanced battery management systems and strategies based on the best available understanding of how battery cells operate.

Contents

1. Redundant Parameter Elimination

a. Introduction
b. Review of BMS definitions and tasks
c. Modeling approach #1: Empirical
d. Modeling approach #2: Physics-based
e. Reducing number of model parameters: method
f. Reducing number of model parameters: solid
g. Reducing number of model parameters: electrolyte, kinetics
h. Summary of reformulated PDEs
i. Recovering original electrochemical variables

 

2. Modeling Electrochemical Impedance

a. More detail required at the solid-electrolyte interface
b. Ideal interfacial impedance model
c. Adding double-layer constant-phase-element behavior
d. Adding solid-diffusivity CPE behavior
e. Seeking full-cell impedance model
f. Full cell impedance response
g. Nyquist (Cole-Cole) plots
h. MATLAB toolbox

 

3. Model Parameter Identification

a. Introduction
b. Overall strategy and roadmap
c. OCP testing
d. Initial data processing
e. Missing-data and inaccessible-lithium problems
f. Practical computation of differential capacity
g. Multi-species-multi-reaction (MSMR) model
h. Converting dis/charge data to OCP
i. Testing the methods using simulation data
j. Application to physical half cells
k. Correlating with cell-level OCV
l. Pulse-resistance testing
m. Frequency-response testing, temperature/SOC dependence
n. Distribution of relaxation times
o. DRT applied to cell impedance data
p. Steady-state testing
q. Lab-test procedures; data calibration; terminal resistance
r. Initialization of optimizations
s. Lumped-parameter constraints
t. MATLAB optimization scheme
u. Cost functions; results
v. MATLAB toolbox

 

4. Efficient Time-Domain Simulation

a. Introduction and context
b. Convert continuous-time to discrete-time frequency response
c. Illustrating frequency-response conversion method
d. Hybrid realization algorithm (HRA)
e. Final form of A , B , C , and D
f. Sample results
g. Simulating a (single) cell in the time domain, near a setpoint
h. Simulation results near a ROM setpoint
i. Simulating over a wide operating range (output blending)
j. Simulation results over wide operating range
k. Simulating constant voltage and constant power
l. Simulating battery packs
m. MATLAB toolbox

 

5. Degradation Modeling and Identification

a. Introduction
b. Limitations on lithium-ion battery performance
c. Solid-electrolyte interphase (SEI) film growth
d. Identifying SEI-model parameter values
e. Lithium plating
f. MATLAB toolbox

 

6. Electrochemical Internal Variables Estimation

a. Introduction
b. Review of sequential probabilistic inference
c. The eight-step process
d. Approximating statistics with sigma points
e. SPKF with the output-blended model
f. Sample simulation results
g. MATLAB toolbox

 

7. Optimal Fast Charge

a. Fast-charge control problem
b. Limitations on fast-charging lithium-ion batteries
c. Models of degradation mechanisms
d. Model predictive control (MPC) - the basics
e. Applying MPC to fast-charge of lithium ion cells
f. MPC implementation
g. Simulation results
h. MATLAB toolbox

 

8. Power Limits Estimation

a. Survey on methods of power-limit calculation
b. MPC - a new paradigm for predictive power estimation
c. Power limit estimation: An MPC-inspired method
d. Power limit estimation - comparison of ECM & PBM
e. Summary and Next Steps
f. MATLAB toolbox

最近チェックした商品