Crossroads in History of Mathematics and Mathematics Education (The Montana Mathematics Enthusiast)

個数:

Crossroads in History of Mathematics and Mathematics Education (The Montana Mathematics Enthusiast)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 382 p.
  • 言語 ENG
  • 商品コード 9781617357053
  • DDC分類 510.9

Full Description

The interaction of the history of mathematics and mathematics education has long been construed as an esoteric area of inquiry. Much of the research done in this realm has been under the auspices of the history and pedagogy of mathematics group. However there is little systematization or consolidation of the existing literature aimed at undergraduate mathematics education, particularly in the teaching and learning of the history of mathematics and other undergraduate topics. In this monograph, the chapters cover topics such as the development of Calculus through the actuarial sciences and map making, logarithms, the people and practices behind real world mathematics, and fruitful ways in which the history of mathematics informs mathematics education. The book is meant to serve as a source of enrichment for undergraduate mathematics majors and for mathematics education courses aimed at teachers.

Contents

Part I. Topics in History and Didactics of Calculus and Analysis.

Chapter 1. A Note on the Institutionalization of Mathematical Knowledge or What Was and Is the Fundamental Theorem of Calculus, Really? Eva Jablonka and Anna Klisinska.

Chapter 2. Transitioning Students to Calculus: Using History as a Guide; Nicolas Haverhals & Matt Roscoe.

Chapter 3. The Tension Between Intuitive Infinitesimals and Formal Mathematical Analysis; Mikhail Katz & David Tall.

Chapter 4. The Didactical Nature of Some Lesser Known Historical Examples in Mathematics; Kajsa Bråting, Nicholas Kallem & Bharath Sriraman.

Chapter 5. The Brachistochrone Problem: Mathematics for a Broad Audience via a Large Context Problem; Jeff Babb & James Currie.

Chapter 6. Chopping Logs: A Look at the History and Uses of Logarithms; Rafael Villarreal-Calderon.

Chapter 7. The History of Mathematics as a Pedagogical Tool: Teaching the Integral of the Secant via Mercator's Projection; Nicolas Haverhals & Matt Roscoe.

Part II. Topics in the History and Didactics of Geometry and Number.

Chapter 8. Euclid's Book on the Regular Solids: Its Place in the Elements and Its Educational Value; Michael N. Fried.

Chapter 9. Book X of The Elements: Ordering Irrationals; Jade Roskam.

Chapter 10. The Origins of the Genus Concept in Binary Quadratic Forms; Mark Beintema & Azar Khosravani.

Chapter 11. Where Are the Plans: A Socio-Critical and Architectural Survey of Early Egyptian Mathematics; Gabriel Johnson, Bharath Sriraman, Rachel Saltzstein.

Part III. History of Mathematics in Mathematics Education.

Chapter 12. Classifying the Arguments and Methodological Schemes for Integrating History in Mathematics Education; Constantinos Tzanakis & Yannis Thomaidis.

Chapter 13. A First Attempt to Identify and Classify Empirical Studies on History in Mathematics Education; Uffe Thomas Jankvist.

Chapter 14. Reflections on and Benefits of Uses of History in Mathematics Education Exemplified by Two Types of Student Work in Upper Secondary School; Tinne Hoff Kjeldsen.

Chapter 15. Adversarial and Friendly Interactions: Progress in 17th Century Mathematics; Shirley B. Gray & Libby Knott.

最近チェックした商品