Probabilistic Deep Learning

個数:

Probabilistic Deep Learning

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 252 p.
  • 言語 ENG
  • 商品コード 9781617296079
  • DDC分類 006.3

Full Description

Probabilistic Deep Learning shows how probabilistic deep learning models gives readers the tools to identify and account for uncertainty and potential errors in their results.

 

Starting by applying the underlying maximum likelihood principle of curve fitting to deep learning, readers will move on to using the Python-based Tensorflow Probability framework, and set up Bayesian neural networks that can state their uncertainties.

 

Key Features

·   The maximum likelihood principle that underlies deep learning applications

·   Probabilistic DL models that can indicate the range of possible outcomes

·   Bayesian deep learning that allows for the uncertainty occurring in real-world situations

·   Applying probabilistic principles to variational auto-encoders

 

Aimed  at  a  reader  experienced  with  developing  machine  learning  or deep learning applications.

 

About the technology

Probabilistic deep learning models are better suited to dealing with the noise  and  uncertainty  of  real  world  data —a  crucial  factor  for self-driving cars, scientific results, financial industries, and other accuracy-critical applications.

 

Oliver Dürr is professor for data science at the University of Applied Sciences in Konstanz, Germany.

 

Beate Sick holds a chair for applied statistics at ZHAW, and works as a researcher and lecturer at the University of Zurich, and as a lecturer at ETH Zurich.

 

Elvis Murina is a research assistant, responsible for the extensive exercises that accompany this book.

 

Dürr and Sick are both experts in machine learning and statistics. They have supervised numerous bachelors, masters, and PhD the seson the topic of deep learning, and planned and conducted several postgraduate and masters-level deep learning courses. All three authors have been working with deep learning methods since 2013 and have extensive experience in both teaching the topic and developing probabilistic deep learning models.

最近チェックした商品