Event Streams in Action : Real-time event systems with Kafka and Kinesis

個数:

Event Streams in Action : Real-time event systems with Kafka and Kinesis

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 344 p.
  • 言語 ENG
  • 商品コード 9781617292347
  • DDC分類 006.312

Full Description

DESCRIPTION
Event Streams in Action is a foundational book introducing the ULP
paradigm and presenting techniques to use it effectively in data-rich
environments. The book begins with an architectural overview,
illustrating how ULP addresses the thorny issues associated with
processing data from multiple sources. It then guides the reader
through examples using the unified log technologies Apache Kafka
and Amazon Kinesis and a variety of stream processing frameworks
and analytics databases.

 

Readers learn to aggregate events from
multiple sources, store them in a unified log, and build data processing
applications on the resulting event streams. As readers progress
through the book, they learn how to validate, filter, enrich, and store
event streams, master key stream processing approaches, and explore
important patterns like the lambda architecture, stream aggregation,
and event re-processing. The book also dives into the methods and
tools usable for event modelling and event analytics, along with
scaling, resiliency, and advanced stream patterns.


KEY FEATURES

• Building data-driven applications that are easier to design,
deploy, and maintain
• Uses real-world examples and techniques
• Full of figures and diagrams
• Hands-on code samples and walkthroughs


This book assumes that the reader has written some Java code. Some
Scala or Python experience is helpful but not required.


ABOUT THE TECHNOLOGY
Unified Log Processing is a coherent data processing architecture that
combines batch and near-real time stream data, event logging and
aggregation, and data processing into a unified event stream. By efficiently
creating a single log of events from multiple data sources, Unified Log
Processing makes it possible to design large-scale data-driven applications
that are easier to design, deploy, and maintain.


AUTHOR BIO
Alexander Dean is co-founder and technical lead of Snowplow Analytics,
an open source event processing and analytics platform.

最近チェックした商品