- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
基本説明
This comprehensive textbook describes and analyzes all available alternating projection methods for solving the general problem of finding a point in the intersection of several given sets that belong to a Hilbert space. For each method, the authors describe and analyze the issues of convergence, speed of convergence, acceleration techniques, stopping criteria and applications. Different types of algorithms and applications are studied for subspaces, linear varieties and general convex sets.
Full Description
This book describes and analyzes all available alternating projection methods for solving the general problem of finding a point in the intersection of several given sets belonging to a Hilbert space. For each method the authors describe and analyze convergence, speed of convergence, acceleration techniques, stopping criteria, and applications. Different types of algorithms and applications are studied for subspaces, linear varieties, and general convex sets. The authors also unify these algorithms into a common theoretical framework.
Alternating Projection Methods is a comprehensive and accessible source of information, providing readers with the theoretical and practical aspects of the most relevant alternating projection methods. It features several acceleration techniques for every method it presents and analyzes, including schemes that cannot be found in other books. It also provides full descriptions of several important mathematical problems and specific applications for which the alternating projection methods represent an efficient option. Examples and problems that illustrate this material are also included.
Contents
Preface
Chapter 1: Introduction
Chapter 2: Overview on Spaces
Chapter 3: The MAP on Subspaces
Chapter 4: Row-Action Methods
Chapter 5: Projecting on Convex Sets
Chapter 6: Applications of MAP for Matrix Problems
Bibliography
Author Index
Subject Index.